156 research outputs found

    Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause

    No full text
    On 14 June 2007, four Time History of Events and Macroscale Interactions during Substorms spacecraft observed a flux transfer event (FTE) on the dayside magnetopause, which has been previously proved to be generated by multiple, sequential X-line reconnection (MSXR) in a 2-D context. This paper reports a further study of the MSXR event to show the 3-D viewpoint based on additional measurements. The 3-D structure of the FTE flux rope across the magnetospheric boundary is obtained on the basis of multipoint measurements taken on both sides of the magnetopause. The flux rope's azimuthally extended section is found to lie approximately on the magnetopause surface and parallel to the X-line direction; while the axis of the magnetospheric branch is essentially along the local unperturbed magnetospheric field lines. In the central region of the flux rope, as distinct from the traditional viewpoint, we find from the electron distributions that two types of magnetic field topology coexist: opened magnetic field lines connecting the magnetosphere and the magnetosheath and closed field lines connecting the Southern and Northern hemispheres. We confirm, therefore, for the first time, the characteristic feature of the 3-D reconnected magnetic flux rope, formed through MSXR, through a determination of the field topology and the plasma distributions within the flux rope. Knowledge of the complex geometry of FTE flux ropes will improve our understanding of solar wind-magnetosphere interaction.Astronomy & AstrophysicsSCI(E)5ARTICLE51904-191111

    Hypoxia promotes breast cancer cell invasion through HIF-1a-mediated up-regulation of the invadopodial actin bundling protein CSRP2

    Get PDF
    Hypoxia is a common feature of solid tumours that promotes invasion and metastatic dissemination. Invadopodia are actin-rich membrane protrusions that direct extracellular matrix proteolysis and facilitate tumour cell invasion. Here, we show that CSRP2, an invadopodial actin bundling protein, is upregulated by hypoxia in various breast cancer cell lines, as well as in pre-clinical and clinical breast tumour specimens. We functionally characterized two hypoxia responsive elements within the proximal promoter of CSRP2 gene which are targeted by hypoxia-inducible factor-1 (HIF-1) and required for promoter transactivation in response to hypoxia. Remarkably, CSRP2 knockdown significantly inhibits hypoxia-stimulated invadopodium formation, ECM degradation and invasion in MDA-MB-231 cells, while CSRP2 forced expression was sufficient to enhance the invasive capacity of HIF-1a-depleted cells under hypoxia. In MCF-7 cells, CSRP2 upregulation was required for hypoxia-induced formation of invadopodium precursors that were unable to promote ECM degradation. Collectively, our data support that CSRP2 is a novel and direct cytoskeletal target of HIF-1 which facilitates hypoxia-induced breast cancer cell invasion by promoting invadopodia formation.The authors are grateful to Monika Dieterle, Arnaud Muller, Pter Nazarov and Muhammad Zaeem Noman (Oncology Department, LIH, Luxembourg) for technical assistance, support in statistical analyses and constructive discussions. The authors also warmly thank Sara A. Courtneidge for the gift of the Tks5-GFP construct (Oregon Health and Science University, Portland, USA). This work was mainly supported by a research grant from “Fondation Cancer” Luxembourg (FC/2016/02), and the National Research Fund (C16/ BM/11297905). Joshua Brown Clay is recipient of a Postdoctoral fellowship from “Fonds De La Recherche Scientifque” - FNRS “Télévie” (7.4512.16). Antoun Al Absi and Hannah Wurzer are recipients of PhD fellowships from the National Research Fund, Luxembourg (AFR7892325 and PRIDE15/10675146/CANBIO, respectively)

    Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause

    Get PDF
    When the supersonic solar wind encounters the Earth's magnetosphere a shock, called bow shock, is formed and the plasma is decelerated and thermalized in the magnetosheath downstream from the shock. Sometimes, however, due to discontinuities in the solar wind, bow shock ripples or ionized dust clouds carried by the solar wind, high speed jets (HSJs) are observed in the magnetosheath. These HSJs have typically a Vx component larger than 200 km s−1 and their dynamic pressure can be a few times the solar wind dynamic pressure. They are typically observed downstream from the quasi-parallel bow shock and have a typical size around one Earth radius (RE) in XGSE. We use a conjunction of Cluster and MMS, crossing simultaneously the magnetopause, to study the characteristics of these HSJs and their impact on the magnetopause. Over 1 h 15 min interval in the magnetosheath, Cluster observed 21 HSJs. During the same period, MMS observed 12 HSJs and entered the magnetosphere several times. A jet was observed simultaneously by both MMS and Cluster and it is very likely that they were two distinct HSJs. This shows that HSJs are not localized into small regions but could span a region larger than 10 RE, especially when the quasi-parallel shock is covering the entire dayside magnetosphere under radial IMF. During this period, two and six magnetopause crossings were observed, respectively, on Cluster and MMS with a significant angle between the observation and the expected normal deduced from models. The angles observed range between from 11° up to 114°. One inbound magnetopause crossing observed by Cluster (magnetopause moving out at 142 km s−1) was observed simultaneous to an outbound magnetopause crossing observed by MMS (magnetopause moving in at −83 km s−1), showing that the magnetopause can have multiple local indentation places, most likely independent from each other. Under the continuous impacts of HSJs, the magnetopause is deformed significantly and can even move in opposite directions at different places. It can therefore not be considered as a smooth surface anymore but more as surface full of local indents. Four dust impacts were observed on MMS, although not at the time when HSJs are observed, showing that dust clouds would have been present during the observations. No dust cloud in the form of Interplanetary Field Enhancements was however observed in the solar wind which may exclude large clouds of dust as a cause of HSJs. Radial IMF and Alfvén Mach number above 10 would fulfill the criteria for the creation of bow shock ripples and the subsequent crossing of HSJs in the magnetosheath.publishedVersio

    Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection

    Get PDF
    Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients’ survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.publishedVersio

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
    corecore