203 research outputs found

    RAO's Score Test in Econometrics

    Get PDF

    Information matrix test, parameter heterogeneity and ARCH:A synthesis

    Get PDF

    Reversible, repeatable and low phase transition behaviour of spin coated nanostructured vanadium oxide thin films with superior mechanical properties

    Get PDF
    Smooth, uniform and crystalline vanadium oxide thin films were deposited on quartz by spin coating technique with four different rpm i.e., 1000, 2000, 3000 and 4000 and subsequently post annealed at 350, 450 and 550 °C in vacuum. Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized for microstructural characterizations and phase analysis, respectively, for vanadium oxide powder and deposited film. Nanorods were observed to be grown after vacuum annealing. X-ray photoelectron spectroscopy (XPS) technique was utilized to study the elemental oxidation state of deposited vanadium oxide films. Thermo-optical and electrical properties such as solar transmittance (τs), reflectance (ρs), absorptance (αs), infrared (IR) emittance (εir) and sheet resistance (Rs) of different thin films were evaluated. Based on the optical characteristics the optimized condition of the film processing was identified to be spin coated at 3000 rpm. Subsequently, the nanoindentation technique was utilized to measure hardness and Young's modulus of the optimized film. The measured nanomechanical properties were found to be superior to those reported for sputtered vanadium oxide films. Finally, temperature dependent phase transition characteristics of optimized vanadium oxide films were studied by differential scanning calorimetry (DSC) technique. Reversible and repeatable phase transition was found to occur in the range of 44–48 °C which was significantly lower than the phase transition temperature (i.e., 68 °C) of bulk VO2

    Gold as an inflation hedge?

    Get PDF
    This paper attempts to reconcile an apparent contradiction between short-run and long-run movements in the price of gold. The theoretical model suggests a set of conditions under which the price of gold rises over time at the general rate of inflation and hence be an effective hedge against inflation. The model also demonstrates that short-run changes in the gold lease rate, the real interest rate, convenience yield, default risk, the covariance of gold returns with other assets and the dollar/world exchange rate can disturb this equilibrium relationship and generate short-run price volatility. Using monthly gold price data (1976-1999), and cointegration regression techniques, an empirical analysis confirms the central hypotheses of the theoretical model

    Creep Life Uncertainty Assessment of a Gas Turbine Airfoil

    Full text link
    corecore