2 research outputs found
Whole-Transcriptome Sequencing Reveals Characteristics of Cancer Microbiome in Korean Patients with GI Tract Cancer: <i>Fusobacterium nucleatum</i> as a Therapeutic Target
Remarkable progress has occurred over the past two decades in identifying microbiomes affecting the human body in numerous ways. The microbiome is linked to gastrointestinal (GI) tract cancer. The purpose of this study was to determine if there is a common microbiome among GI tract cancers and how the microbiome affects the disease. To ensure ethnic consistency, Korean patients with GI tract cancer were selected. Fusobacterium nucleatum is an enriched bacteria in all cancer tissues. F. nucleatum is a Gram-negative obligate anaerobe that promotes colorectal cancer. Through Gene Set Enrichment Analysis (GSEA) and Differentially Expressed Genes (DEG) analyses, the upregulation of the G2M checkpoint pathway was identified in the F. nucleatum-high group. Cell viability and G2M checkpoint pathway genes were examined in MC 38 cells treated with F. nucleatum. F. nucleatum upregulated the expression of G2M checkpoint pathway genes and the cell proliferation of MC 38 cells. F. nucleatum facilitated cancer’s use of G2M checkpoint pathways and F. nucleatum could be a therapeutic target in Korean GI tract cancer
Genome-wide CRISPR screening identifies tyrosylprotein sulfotransferase-2 as a target for augmenting anti-PD1 efficacy
Abstract Background Immune checkpoint therapy (ICT) provides durable responses in select cancer patients, yet resistance remains a significant challenge, prompting the exploration of underlying molecular mechanisms. Tyrosylprotein sulfotransferase-2 (TPST2), known for its role in protein tyrosine O-sulfation, has been suggested to modulate the extracellular protein-protein interactions, but its specific role in cancer immunity remains largely unexplored. Methods To explore tumor cell-intrinsic factors influencing anti-PD1 responsiveness, we conducted a pooled loss-of-function genetic screen in humanized mice engrafted with human immune cells. The responsiveness of cancer cells to interferon-γ (IFNγ) was estimated by evaluating IFNγ-mediated induction of target genes, STAT1 phosphorylation, HLA expression, and cell growth suppression. The sulfotyrosine-modified target gene of TPST2 was identified by co-immunoprecipitation and mass spectrometry. The in vivo effects of TPST2 inhibition were evaluated using mouse syngeneic tumor models and corroborated by bulk and single-cell RNA sequencing analyses. Results Through in vivo genome-wide CRISPR screening, TPST2 loss-of-function emerged as a potential enhancer of anti-PD1 treatment efficacy. TPST2 suppressed IFNγ signaling by sulfating IFNγ receptor 1 at Y397 residue, while its downregulation boosted IFNγ-mediated signaling and antigen presentation. Depletion of TPST2 in cancer cells augmented anti-PD1 antibody efficacy in syngeneic mouse tumor models by enhancing tumor-infiltrating lymphocytes. RNA sequencing data revealed TPST2’s inverse correlation with antigen presentation, and increased TPST2 expression is associated with poor prognosis and altered cancer immunity across cancer types. Conclusions We propose TPST2’s novel role as a suppressor of cancer immunity and advocate for its consideration as a therapeutic target in ICT-based treatments