10 research outputs found

    Light Elements and Cosmic Rays in the Early Galaxy

    Full text link
    We derive constraints on the cosmic rays responsible for the Be and part of the B observed in stars formed in the early Galaxy: the cosmic rays cannot be accelerated from the ISM; their energy spectrum must be relatively hard (the bulk of the nuclear reactions should occur at >>30 MeV/nucl); and only 1049^{49} erg/SNII in high metallicity, accelerated particle kinetic energy could suffice to produce the Be and B. The reverse SNII shock could accelerate the particles.Comment: 5 pages LATEX using paspconf.sty file with one embedded eps figure using psfig. In press, Proc. Goddard High Resolution Spectrograph Symposium, PASP, 199

    Gamma Ray Lines from the Orion Complex

    Full text link
    We show that the 4.44 and 6.13 MeV line emission observed with COMPTEL from Orion is consistent with gamma ray spectra consisting of a mixture of narrow and broad lines or spectra containing only broad lines. We employed several accelerated particle compositions and showed that the current COMPTEL data in the 3--7 MeV region alone cannot distinguish between the various possibilities. However, the COMPTEL upper limits in the 1--3 MeV band favor a composition similar to that of the winds of Wolf-Rayet stars of spectral type WC. The power dissipated by the accelerated particles at Orion is about 4 ×\times 1038^{38} erg s−1^{-1}. These particles are not expected to produce significant amounts of 26^{26}Al.Comment: 12 pages, uuencoded compressed postscript with 4 figures ApJL in press 199

    Lithium-6 from Solar Flares

    Get PDF
    By introducing a hitherto ignored Li-6 producing process, due to accelerated He-3 reactions with He-4, we show that accelerated particle interactions in solar flares produce much more Li-6 than Li-7. By normalizing our calculations to gamma-ray data we demonstrate that the Li-6 produced in solar flares, combined with photospheric Li-7, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.Comment: latex 9 pages, 2 figures, ApJ Letters in pres

    Light Element Evolution and Cosmic Ray Energetics

    Get PDF
    Using cosmic-ray energetics as a discriminator, we investigate evolutionary models of LiBeB. We employ a Monte Carlo code which incorporates the delayed mixing into the ISM both of the synthesized Fe, due to its incorporation into high velocity dust grains, and of the cosmic-ray produced LiBeB, due to the transport of the cosmic rays. We normalize the LiBeB production to the integral energy imparted to cosmic rays per supernova. Models in which the cosmic rays are accelerated mainly out of the average ISM significantly under predict the measured Be abundance of the early Galaxy, the increase in [O/Fe] with decreasing [Fe/H] notwithstanding. We suggest that this increase could be due to the delayed mixing of the Fe. But, if the cosmic-ray metals are accelerated out of supernova ejecta enriched superbubbles, the measured Be abundances are consistent with a cosmic-ray acceleration efficiency that is in very good agreement with the current epoch data. We also find that neither the above cosmic-ray origin models nor a model employing low energy cosmic rays originating from the supernovae of only very massive progenitors can account for the 6^6Li data at values of [Fe/H] below −-2.Comment: latex 19 pages, 2 tables, 10 eps figures, uses aastex.cls natbib.sty Submitted to the Astrophysical Journa

    X-Rays from Accelerated Ion Interactions

    Get PDF
    We have developed in detail the theory of X-ray line and continuum production due to atomic interactions of accelerated ions, incorporating in our calculations information from a broad range of laboratory measurements. We applied our calculations to the Orion region from which nuclear gamma-ray lines were observed with the COMPTEL instrument on CGRO. The accelerated particles which produce this gamma-ray emission via nuclear reactions also produce X-ray lines via atomic interactions. We predict strong line emission in the range from 0.5 to 1 keV, mainly due to de-excitations in fast O ions. While much of the diffuse X-ray emission observed with ROSAT from Orion could be due to accelerated ions, the current X-ray data do not provide unambiguous signatures for such an origin. If future observations with high spectral resolution would confirm the predicted X-rays, the combined analysis of the X-ray and gamma-ray data will set important constraints on the origin of the accelerated particles and their interaction model.Comment: 26 pages, 14 figure

    High-resolution observation of the solar positron-electron annihilation line, Astrophys

    No full text
    ABSTRACT The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed the positron-electron annihilation line at 511 keV produced during the 2002 July 23 solar flare. The shape of the line is consistent with annihilation in two vastly different solar environments. It can be produced by formation of positronium by charge exchange in flight with hydrogen in a quiet solar atmosphere at a temperature of ∼6000 K. However, the measured upper limit to the ratio (ratio of annihilation photons in the positronium continuum to the number 3g/2g in the line) is only marginally consistent with what is calculated for this environment. The annihilation line can also be fitted by a thermal Gaussian having a width of keV (FWHM), indicating temperatures of 8.1 ‫ע‬ 1.1 ∼ K. The measured ratio does not constrain the density when the annihilation takes place in 5 (4-7) # 10 3g/2g such an ionized medium, although the density must be high enough to slow down the positrons. This would require the formation of a substantial mass of atmosphere at transition-region temperatures during the flare
    corecore