560 research outputs found
p35, the non-cyclin activator of Cdk5, protects podocytes against apoptosis in vitro and in vivo
Cyclin-dependent kinase-5 is widely expressed and predominantly regulated by the non-cyclin activator p35. Since we recently showed that expression of p35 in the kidney is restricted to podocytes, we examined here its function in mice in which p35 was genetically deleted. The mice did not exhibit kidney abnormalities during glomerular development or during adult life. Conditionally immortalized cultured podocytes, derived from these null mice, did not have any change in their morphology, differentiation, or proliferation. However, when these cultured podocytes were exposed to UV-C irradiation, serum depletion, puromycin aminonucleoside, or transforming growth factor-β-1, they showed increased apoptosis compared to those from wild-type mice. Levels of Bcl-2 were decreased in these null podocytes but increased after transduction with human p35. Restoration of p35 or the ectopic expression of Bcl-2 reduced the susceptibility of p35-null podocytes to apoptosis. Experimental glomerulonephritis, characterized by podocyte apoptosis and subsequent crescent formation, was utilized to test these findings in vivo. Podocyte apoptosis was significantly increased in diseased p35-null compared with wild-type mice, accompanied by increased glomerulosclerosis and decreased renal function. Our study shows that p35 does not affect glomerulogenesis but controls podocyte survival following injury, in part, by regulating Bcl-2 expression
Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination
Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein
Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination
Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein
In planta expression of human polyQ-expanded huntingtin fragment reveals mechanisms to prevent disease-related protein aggregation
In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington’s disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find tha
Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks
Recent research on ecological networks suggests that mutualistic networks are
more nested than antagonistic ones and, as a result, they are more robust
against chains of extinctions caused by disturbances. We evaluate whether
mutualistic networks are more nested than comensalistic and antagonistic
networks, and whether highly nested, host-epiphyte comensalistic networks fit
the prediction of high robustness against disturbance. A review of 59 networks
including mutualistic, antagonistic and comensalistic relationships showed that
comensalistic networks are significantly more nested than antagonistic and
mutualistic networks, which did not differ between themselves. Epiphyte-host
networks from old-growth forests differed from those from disturbed forest in
several topological parameters based on both qualitative and quantitative
matrices. Network robustness increased with network size, but the slope of this
relationship varied with nestedness and connectance. Our results indicate that
interaction networks show complex responses to disturbances, which influence
their topology and indirectly affect their robustness against species
extinctions
Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease:a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice
Recently, the European Medicines Agency approved the use of the vasopressin V2 receptor antagonist tolvaptan to slow the progression of cyst development and renal insufficiency of autosomal dominant polycystic kidney disease (ADPKD) in adult patients with chronic kidney disease stages 1-3 at initiation of treatment with evidence of rapidly progressing disease. In this paper, on behalf of the ERA-EDTA Working Groups of Inherited Kidney Disorders and European Renal Best Practice, we aim to provide guidance for making the decision as to which ADPKD patients to treat with tolvaptan. The present position statement includes a series of recommendations resulting in a hierarchical decision algorithm that encompasses a sequence of risk-factor assessments in a descending order of reliability. By examining the best-validated markers first, we aim to identify ADPKD patients who have documented rapid disease progression or are likely to have rapid disease progression. We believe that this procedure offers the best opportunity to select patients who are most likely to benefit from tolvaptan, thus improving the benefit-to-risk ratio and cost-effectiveness of this treatment. It is important to emphasize that the decision to initiate treatment requires the consideration of many factors besides eligibility, such as contraindications, potential adverse events, as well as patient motivation and lifestyle factors, and requires shared decision-making with the patient.</p
Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function
Lipids undergo self-assembly to form ordered nonlamellar, nanoperiodic arrays both in vitro and in vivo. While engineering of such membrane arrays for technical devices is envisaged, we know little about their cellular function. Do they represent building blocks of an inherent cellular nanotechnology? Prospects for answering this question could be improved if the nanophysical properties of the membrane arrays could be studied in the context of specific cellular functions. Therefore, we draw attention to exceptional complex membrane arrays found in the renal epithelial cell line PtK2 that could provide perfect conditions for both biophysical and cell functional studies. The so-called tubulohelical membrane arrays (TUHMAs) combine nanoperiodicity of lipid membranes with that of helix-like proteinaceous core structures. Strikingly, they show several characteristics of dynamic, microtubule-associated single organelles. Our initial data indicate that TUHMA formation occurs in the depth of the cytoplasm under participation of cytoplasmic nucleoporins. Once matured, they may fuse with the nuclear membrane in polarized positions, either perpendicularly or in parallel to the nucleus. As a starting point for the initiation of functional studies we found a connection between TUHMAs and primary cilia, indicated by immunolabeling patterns of detyrosynated tubulin and cytoplasmic nucleoporins. We discuss these observations in the context of the ciliary cycle and of the specific requirement of ciliated renal epithelial cells for oriented cell division. Finally, we raise the question of whether putative nanooptical properties of TUHMAs could serve for communicating orientation between dividing cells
- …