7 research outputs found
A Generalized and Parallelized SSIM-Based Multilevel Thresholding Algorithm
Multilevel thresholding is a widely used technique to perform image segmentation. It consists of dividing an input image into several distinct regions by finding the optimal thresholds according to a certain objective function. In this work, we generalize the use of the SSIM quality measure as an objective function to solve the multilevel thresholding problem using empirically tuned swarm intelligence algorithms. The experimental study we have conducted shows that our approach, producing near-exact solutions, is more effective compared to the state-of-the-art methods. Moreover, we show that the computation complexity has been significantly reduced by adopting a shared-memory parallel programming paradigm for all the algorithms we have implemented
Multilevel inverter with optimal THD through the firefly algorithm
Reduction of the Total Harmonic Distortion (THD) in multilevel inverters requires resolution of complex nonlinear transcendental equations; in this paper we propose a combination of one of the best existing optimized hardware structures with the recent firefly algorithm, which was used to optimize the THD, through finding the best switching angles and guaranteeing the minimization of harmonics within a user defined bandwidth. The obtained THD through the simulation of the thirteen-level symmetric inverter has been reduced down to 5% (FFT of 60 harmonics). In order to validate the simulation results, a thirteen-level symmetric inverter prototype has been made, and practically experimented and tested with different loads. Consequently, the measured THD with resistive load was 4.7% on a bandwidth of 3 kHz. The main advantage of the achieved work is the reduction of the THD