43 research outputs found

    Efficacy and safety of triazavirin therapy for coronavirus disease 2019 : A pilot randomized controlled trial

    Get PDF
    Acknowledgements: We are deeply grateful to the front-line clinicians who participated in the study while directly fighting the epidemic. This study was supported by the Chinese Academy of Engineering Projects for COVID-19 (2020-KYGG-01-04) and Heilongjiang Province Urgent Project-6 for COVID-19. Data and safety monitoring board members of this trial included Kang Li, Yong Zhang, Songjiang Liu, and Yaohui Shi.Peer reviewedPublisher PD

    Pre-Treatment with Melatonin Enhances Therapeutic Efficacy of Cardiac Progenitor Cells for Myocardial Infarction

    Get PDF
    Background/Aims: Melatonin possesses many biological activities such as antioxidant and anti-aging. Cardiac progenitor cells (CPCs) have emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the low survival of transplanted CPCs in infarcted myocardium limits the successful use in treating MI. In the present study, we aimed to investigate if melatonin protects against oxidative stress-induced CPCs damage and enhances its therapeutic efficacy for MI. Methods: TUNEL assay and EdU assay were used to detect the effects of melatonin and miR-98 on H2O2-induced apoptosis and proliferation. MI model was used to evaluate the potential cardioprotective effects of melatonin and miR-98. Results: Melatonin attenuated H2O2-induced the proliferation reduction and apoptosis of c-kit+ CPCs in vitro, and CPCs which pretreated with melatonin significantly improved the functions of post-infarct hearts compared with CPCs alone in vivo. Melatonin was capable to inhibit the increase of miR-98 level by H2O2 in CPCs. The proliferation reduction and apoptosis of CPCs induced by H2O2 was aggravated by miR-98. In vivo, transplantation of CPCs with miR-98 silencing caused the more significant improvement of cardiac functions in MI than CPCs. MiR-98 targets at the signal transducer and activator of the transcription 3 (STAT3), and thus aggravated H2O2-induced the reduction of Bcl-2 protein. Conclusions: Pre-treatment with melatonin protects c-kit+ CPCs against oxidative stress-induced damage via downregulation of miR-98 and thereby increasing STAT3, representing a potentially new strategy to improve CPC-based therapy for MI

    Prophylactic rivaroxaban in the early post-discharge period reduces the rates of hospitalization for atrial fibrillation and incidence of sudden cardiac death during long-term follow-up in hospitalized COVID-19 survivors

    Get PDF
    Introduction: While acute Coronavirus disease 2019 (COVID-19) affects the cardiovascular (CV) system according to recent data, an increased CV risk has been reported also during long-term follow-up (FU). In addition to other CV pathologies in COVID-19 survivors, an enhanced risk for arrhythmic events and sudden cardiac death (SCD) has been observed. While recommendations on post-discharge thromboprophylaxis are conflicting in this population, prophylactic short-term rivaroxaban therapy after hospital discharge showed promising results. However, the impact of this regimen on the incidence of cardiac arrhythmias has not been evaluated to date.Methods: To investigate the efficacy of this therapy, we conducted a single center, retrospective analysis of 1804 consecutive, hospitalized COVID-19 survivors between April and December 2020. Patients received either a 30-day post-discharge thromboprophylaxis treatment regimen using rivaroxaban 10 mg every day (QD) (Rivaroxaban group (Riva); n = 996) or no thromboprophylaxis (Control group (Ctrl); n = 808). Hospitalization for new atrial fibrillation (AF), new higher-degree Atrioventricular-block (AVB) as well as incidence of SCD were investigated in 12-month FU [FU: 347 (310/449) days].Results: No differences in baseline characteristics (Ctrl vs Riva: age: 59.0 (48.9/66.8) vs 57 (46.5/64.9) years, p = n.s.; male: 41.5% vs 43.7%, p = n.s.) and in the history of relevant CV-disease were observed between the two groups. While hospitalizations for AVB were not reported in either group, relevant rates of hospitalizations for new AF (0.99%, n = 8/808) as well as a high rate of SCD events (2.35%, n = 19/808) were seen in the Ctrl. These cardiac events were attenuated by early post-discharge prophylactic rivaroxaban therapy (AF: n = 2/996, 0.20%, p = 0.026 and SCD: n = 3/996, 0.30%, p < 0.001) which was also observed after applying a logistic regression model for propensity score matching (AF: χ2-statistics = 6.45, p = 0.013 and SCD: χ2-statistics = 9.33, p = 0.002). Of note, no major bleeding complications were observed in either group.Conclusion: Atrial arrhythmic and SCD events are present during the first 12 months after hospitalization for COVID-19. Extended prophylactic Rivaroxaban therapy after hospital discharge could reduce new onset of AF and SCD in hospitalized COVID-19 survivors

    Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles

    No full text
    The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future

    Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications

    No full text
    Abstract In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes
    corecore