68 research outputs found

    Molecular characterization of Miraflores peach variety and relatives using SSRs

    Get PDF
    The definitive version is published in: http://www.sciencedirect.com/science/journal/03044238Some traditional peach varieties, originated from the region of Aragón (Spain), were analysed by SSRs (Simple Sequence Repeats). The aim of this research was to characterize 19 clones related to ‘Miraflores’ variety, with unknown pedigrees, to assess their genetic diversity and to elucidate their possible relationships with 10 traditional peach varieties. Twenty SSR primer pairs with high levels of polymorphism, which have been previously developed for peach, were used in this study. A total of 46 alleles were obtained for all the microsatellites studied, ranging from one to six alleles per locus, with a mean value of 2.3 alleles per locus. Fourteen SSRs were polymorphic in the set of varieties studied and permitted to distinguish 16 different genotypes out of the 30 initially studied, although fourteen ‘Miraflores’ clones showed identical gel profiles. The genetic distance matrix was used to construct Neighbor joining cluster and to perform principal coordinate analysis which allowed the arrangement of all the genotypes according to their genetic relationships. The genetic relationships among these traditional peach varieties, and in particular among ‘Miraflores’ clones are discussed. The obtained results confirm that microsatellite markers are very useful for these purposes.We are thankful to T.N. Zhebentyayeva and G.L. Reighard for helpful comments on the manuscript. This research was funded by CICYT (Comisión Interministerial de Ciencia y Tecnología, AGL2002-04219 and AGL 2005-05533), INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, RF03-014-C2), Bilateral Spain-France (HF03-273) and DGA (A28, A44) projects and co-funded by the European Regional Development Fund. M. Bouhadida was supported by a fellowship from the AECI (Agencia Española de Cooperación Internacional) of the Spanish Ministry of Foreign Affairs.Peer reviewe

    Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial

    Full text link
    BACKGROUND: Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). METHODS: Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. RESULTS: A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. CONCLUSIONS: Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches

    Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(-/-) mice

    Full text link
    The M(r) 16,000 NH(2)-terminal fragment of human prolactin (16K hPRL) is a potent antiangiogenic factor inhibiting endothelial cell function in vitro and neovascularization in vivo. The present study was undertaken to test the ability of 16K hPRL to inhibit the growth of human HCT116 colon cancer cells transplanted s.c. into Rag1(-/-) mice. For this purpose, HCT116 cells were stably transfected with an expression vector encoding a peptide that included the signal peptide and first 139 amino acid residues of human prolactin (HCT116(16K)). Stable clones of HCT116(16K) cells secreted large amounts of biologically active 16K hPRL into the culture medium. Growth of HCT116(16K) cells in vitro was not different from wild-type HCT116 (HCT116(wt)) or vector-transfected HCT116 (HCT116(vector)) cells. Addition of recombinant 16K hPRL had no effect on the proliferation of HCT116(wt) cells in vitro. Tumor growth of HCT116(16K) cells implanted into Rag1(-/-) mice was inhibited 63% in four separate experiments compared with tumors formed from HCT116(wt) or HCT116(vector) cells. Inhibition of tumor growth of HCT116(16K) cells was correlated with a decrease in microvascular density by 44%. These data demonstrate that biologically active 16K hPRL can be expressed and secreted from human colon cancer cells using a gene transfer approach and that production of 16K hPRL by these cells was capable of inhibiting tumor growth and neovascularization. These findings support the potential of 16K hPRL as a therapeutic agent for the treatment of colorectal cancer

    Molecular targeting of antiangiogenic factor 16K hPRL inhibits oxygen-induced retinopathy in mice

    Full text link
    PURPOSE. To examine the ability and mechanism of the 16 kDa N-terminal fragment of human prolactin (16K hPRL) in the inhibition of abnormal retinal neovascularization. METHODS. The 16K hPRL-encoding sequence was inserted into an adenoviral vector (16K-Ad). Western blot analysis verified the expression of 16K hPRL and inhibition of proliferation, confirming functional activity of the 16K hPRL in virus-infected adult bovine aortic endothelial (ABAE) cells. 16K hPRL inhibited retinal neovascularization in a mouse model of oxygen-induced retinopathy. The ability of recombinant 16K hPRL expressed in E. coli (r16K hPRL) was compared to that of endostatin in inducing apoptosis of cultured human retinal endothelial cells (HREC). RESULTS. 16K was expressed in virus-infected ABAE cells and resulted in a dose-dependent inhibition of cell proliferation. Eyes injected with 16K-Ad showed a reduction in preretinal neovascularization of 82.3 +/- 9.3% (P < 0.00001) when compared to uninjected controls. r16K hPRL was 100 times more potent than endostatin in inducing apoptosis in HRECs. CONCLUSIONS. Intravitreal administration of 16K hPRL inhibited neovascularization in the mouse model of oxygen-induced retinopathy. 16K hPRL stimulated apoptosis in HRECs and inhibited cell proliferation in ABAE cells. These results suggested a potential therapeutic role for 16K hPRL in the treatment of proliferative retinopathies

    Opposing Actions of Intact and N-Terminal Fragments of the Human Prolactin/Growth Hormone Family Members on Angiogenesis: An Efficient Mechanism for the Regulation of Angiogenesis

    Full text link
    Angiogenesis, the process of development of a new microvasculature, is regulated by a balance of positive and negative factors. We show both in vivo and in vitro that the members of the human prolactin/growth hormone family, i.e., human prolactin, human growth hormone, human placental lactogen, and human growth hormone variant are angiogenic whereas their respective 16-kDa N-terminal fragments are antiangiogenic. The opposite actions are regulated in part via activation or inhibition of mitogen-activated protein kinase signaling pathway. In addition, the N-terminal fragments stimulate expression of type 1 plasminogen activator inhibitor whereas the intact molecules have no effect, an observation consistent with the fragments acting via separate receptors. The concept that a single molecule encodes both angiogenic and antiangiogenic peptides represents an efficient model for regulating the balance of positive and negative factors controlling angiogenesis. This hypothesis has potential physiological importance for the control of the vascular connection between the fetal and maternal circulations in the placenta, where human prolactin, human placental lactogen, and human growth hormone variant are expressed

    Overexpression of Gremlin-1 in patients with Loeys-Dietz syndrome: Implications on pathophysiology and early disease detection

    Get PDF
    BACKGROUNDS: The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder caused by mutations in the transforming growth factor β (TGF-β) receptors TGFBR1 or TGFBR2. Most patients with LDS develop severe aortic aneurysms resulting in early need of surgical intervention. In order to gain further insight into the pathophysiology of the disorder, we investigated circulating outgrowth endothelial cells (OEC) from the peripheral blood of LDS patients from a cohort of 23 patients including 6 patients with novel TGF-β receptor mutations. METHODS AND RESULTS: We performed gene expression profiling of OECs using microarray analysis followed by quantitative PCR for verification of gene expression. Compared to OECs of age- and sex-matched healthy controls, OECs isolated from three LDS patients displayed altered expression of several genes belonging to the TGF-β pathway, especially those affecting bone morphogenic protein (BMP) signalling including BMP2, BMP4 and BMPR1A. Gene expression of BMP antagonist Gremlin-1 (GREM1) showed the most prominent up-regulation. This increase was confirmed at the protein level by immunoblotting of LDS-OECs. In immunohistochemistry, abundant Gremlin-1 protein expression could be verified in endothelial cells as well as smooth muscle cells within the arterial media. Furthermore, Gremlin-1 plasma levels of LDS patients were significantly elevated compared to healthy control subjects. CONCLUSIONS: These findings open new avenues in the understanding of the pathogenesis of Loeys-Dietz syndrome and the development of new diagnostic serological methods for early disease detection

    Prolactin/growth hormone–derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis

    Full text link
    Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short peptides known to destabilize membranes and lipid cores and characterized by an asymmetric distribution of hydrophobic residues along the axis when helical. We have previously shown that 16-kDa fragments of the human prolactin/growth hormone (PRL/GH) family members are potent angiogenesis inhibitors. Here, we demonstrate that all these fragments possess a 14-aa sequence having the characteristics of a tilted peptide. The tilted peptides of human prolactin and human growth hormone induce endothelial cell apoptosis, inhibit endothelial cell proliferation, and inhibit capillary formation both in vitro and in vivo. These antiangiogenic effects are abolished when the peptides' hydrophobicity gradient is altered by mutation. We further demonstrate that the well known tilted peptides of simian immunodeficiency virus gp32 and Alzheimer's β-amyloid peptide are also angiogenesis inhibitors. Taken together, these results point to a potential new role for tilted peptides in regulating angiogenesis
    • …
    corecore