76 research outputs found

    Are children participating in a quasi-experimental education outside the classroom intervention more physically active?

    Get PDF
    Abstract Background Education outside the classroom (EOtC) is a curriculum-based approach to teaching that has shown positive associations with children’s physical activity and academic learning in small-scale case studies. The purpose of this large-scale quasi-experimental study was to determine if children who participate regularly in EOtC spend more time being physically active than children who do not. Methods In the 2014/2015 study TEACHOUT, classes were recruited in pairs such that each EOtC class had a non-EOtC comparison class at the same school and grade level. Participants in 17 EOtC classes and 16 comparison parallel classes across Denmark wore an Axivity AX3 accelerometer taped to the lower back for seven consecutive days. Data from 201 EOtC participants (63.3% girls, age 10.82 ± 1.05,) and 160 comparison participants (59.3% girls, age 10.95 ± 1.01) were analysed using an ‘intention to treat’ (ITT) approach. The amount of EOtC the participants were exposed to was monitored. Associations between time spent in different physical activity intensities and EOtC group and sex were assessed using generalised linear models adjusted for age. In a second analysis, we modified the sample using a ‘per protocol’ (PP) approach, only including EOtC and comparison class pairs where the EOtC class had >150 min and the comparison had <150 min of EOtC during the measured week. Results On average, EOtC participants spent 8.4 (ITT) and 9.2 (PP) minutes more in moderate-to-vigorous physical activity (MVPA) per day than comparison participants (p < 0.05). However, EOtC boys spent 18.7 (ITT) and 20.8 (PP) minutes more in MVPA per day than comparison boys (p < 0.01), while there were no significant between-group differences for girls. Conclusions For boys, EOtC was associated with more daily time being spent moderately and vigorously physically active. No differences were observed for girls. Implementing EOtC into schools’ weekly practice can be a time- and cost-neutral, supplementary way to increase time spent in PA for boys through grades three to six. Trial registration The Scientific Ethical Committee in the Capital Region of Denmark protocol number H-4-2014-FSP . 5 March, 2014

    Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities

    Get PDF
    Tongue-computer interfaces have shown the potential to control assistive devices developed for individuals with severe disabilities. However, current efficient tongue-computer interfaces require invasive methods for attaching the sensor activation units to the tongue, such as piercing. In this study, we propose a noninvasive tongue-computer interface to avoid the requirement of invasive activation unit attachment methods. We developed the noninvasive tongue-computer interface by integrating an activation unit on a frame, and mounting the frame on an inductive tongue-computer interface (ITCI). Thus, the users are able to activate the inductive sensors on the interface by positioning the activation unit with their tongue. They also do not need to remount the activation unit before each use. We performed pointing tests for controlling a computer cursor and number typing tests with two able-bodied participants, where one of them was experienced with using invasive tongue-computer interfaces and other one had no experience. We measured throughput and movement error for pointing tasks, and speed and accuracy for number typing tasks for the evaluation of the feasibility and performance of the developed noninvasive system. Results show that the inexperienced participant achieved similar results with the developed noninvasive tongue-computer interface compared to the current invasive version of the ITCI, while the experienced participant performed better with the invasive tongue-computer interface

    Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia

    Get PDF
    Abstract Background For an individual with tetraplegia assistive robotic arms provide a potentially invaluable opportunity for rehabilitation. However, there is a lack of available control methods to allow these individuals to fully control the assistive arms. Methods Here we show that it is possible for an individual with tetraplegia to use the tongue to fully control all 14 movements of an assistive robotic arm in a three dimensional space using a wireless intraoral control system, thus allowing for numerous activities of daily living. We developed a tongue-based robotic control method incorporating a multi-sensor inductive tongue interface. One abled-bodied individual and one individual with tetraplegia performed a proof of concept study by controlling the robot with their tongue using direct actuator control and endpoint control, respectively. Results After 30 min of training, the able-bodied experimental participant tongue controlled the assistive robot to pick up a roll of tape in 80% of the attempts. Further, the individual with tetraplegia succeeded in fully tongue controlling the assistive robot to reach for and touch a roll of tape in 100% of the attempts and to pick up the roll in 50% of the attempts. Furthermore, she controlled the robot to grasp a bottle of water and pour its contents into a cup; her first functional action in 19 years. Conclusion To our knowledge, this is the first time that an individual with tetraplegia has been able to fully control an assistive robotic arm using a wireless intraoral tongue interface. The tongue interface used to control the robot is currently available for control of computers and of powered wheelchairs, and the robot employed in this study is also commercially available. Therefore, the presented results may translate into available solutions within reasonable time
    • …
    corecore