11 research outputs found

    Understanding and Identifying Cognitive Load in Networked Learning

    Get PDF
    This paper considers cognitive load theory (CLT) in the context of networked learning (NL).  It aligns with NL practitioners' efforts to understand and eliminate barriers to learning in NL situations.  The ideas presented are based on the premise that by recognising and either minimising or eliminating instances of unnecessary cognitive load in NL situations educators can improve learners’ abilities to acquire and develop schema and, in doing so, educators can support learning in NL situations.  The presentation brings together current thinking in cognitive load theory and descriptions of key aspects of NL to identify and describe of potential instances of cognitive load experienced by networked learners.The paper is structured in three main sections: The first section provides the background to our exploration of CLT in the context of NL.  It includes an overview of CLT and its development; an overview of NL; and a definition of the problem this paper seeks to address, namely, that NL situations include a number of instances of cognitive load which may not be present in other (e.g., face-to-face; on-campus) learning situations.  The second section explores common features of NL and identifies potential sources of cognitive load in NL situations.  It is organised according to key features of the 'architecture' of NL:  the learning environment; learning tasks and learner activity.  By identifying potential instances of cognitive load, the presentation provides a basis for, firstly, understanding cognitive load in NL; and, secondly, addressing it. Key sources of cognitive load referenced in this paper include the presentation of information in NL situations; the use of mediating technologies; the demands of managing information in connected environments; the load associated with technology-mediated social activity, including computer-mediated communication; the presentation of learning tasks; and the demands of 'learning to learn' in NL situations.  The third section of the paper identifies a potential research agenda to guide further explorations of CLT in NL including: research into technical aspects of NL to improve the presentation of information and computer interfaces; research into the use of instructional design techniques sympathetic to CLT and specifically targeting NL and engagement tasks; research to understand learning to learn online in NL from a CLT perspective

    Education for citizenship in South Australian public schools: a pilot study of senior leader and teacher perceptions

    Get PDF
    Preparing students for informed and active citizenship is a core goal of education and schooling in Australia. The ways schools educate and prepare young Australians for citizenship involves a range of processes and initiatives central to the work of schools, including school ethos, mission, extra-curricular activities and community-based participation. With regard to the formal curriculum, the recent introduction and implementation of the first ever Federal Australian curriculum includes provision for a new subject – Civics and Citizenship. Research evidence from other nations suggests that schools understand, approach and enact education for citizenship in a multitude of ways, yet how Australian schools construct this aspect of their work is currently under-researched. In this context, and drawing on data from interviews with school leaders and teachers of year six-eight (11-14 year olds) students in a small sample of South Australian primary and secondary schools, we explore perceptions and current approaches to education for citizenship. Our findings suggest (i) that while school leaders and teachers value education for citizenship, they do so for different reasons; (ii) that schools place values as central to education for citizenship; and, (iii) that community involvement is typically understood as occurring within rather than beyond the school

    TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star

    Get PDF
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 MJ\rm {M_J} (43.9 ± 7.3 M\, M_{\rm \oplus}), a radius of RP = 0.639 ± 0.013 RJ\rm {R_J} (7.16 ± 0.15 R\, \mathrm{ R}_{\rm \oplus}), bulk density of 0.650.11+0.120.65^{+0.12}_{-0.11} (cgs), and period 18.388180.00084+0.0008518.38818^{+0.00085}_{-0.00084} days\rm {days}. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 Msun\rm {M_{sun}}, R* = 1.888 ± 0.033 Rsun\rm {R_{sun}}, Teff = 6075 ± 90 K\rm {K}, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems

    Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Full text link
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Kidney and Cardiovascular Effects of Canagliflozin According to Age and Sex: A Post Hoc Analysis of the CREDENCE Randomized Clinical Trial

    Full text link
    Rationale & Objective: It is unclear whether the effect of canagliflozin on adverse kidney and cardiovascular events in those with diabetic kid-ney disease varies by age and sex. We assessed the effects of canagliflozin among age group categories and between sexes in the Canagli-flozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study.Study Design: Secondary analysis of a random-ized controlled trial. Setting & Participants: Participants in the CREDENCE trial. Intervention: Participants were randomly assigned to receive canagliflozin 100 mg/d or placebo.Outcomes: Primary composite outcome of kid-ney failure, doubling of serum creatinine con-centration, or death due to kidney or cardiovascular disease. Prespecified secondary and safety outcomes were also analyzed. Out-comes were evaluated by age at baseline (<60, 60-69, and >_70 years) and sex in the intention-to-treat population using Cox regression models.Results: The mean age of the cohort was 63.0 & PLUSMN; 9.2 years, and 34% were female. Older age and female sex were independently associ-ated with a lower risk of the composite of adverse kidney outcomes. There was no evidence that the effect of canagliflozin on the primary outcome (acomposite of kidney failure, a doubling of serum creatinine concentration, or death from kidney or cardiovascular causes) differed between age groups (HRs, 0.67 [95% CI, 0.52-0.87], 0.63 [0.4 8-0.82], and 0.89 [0.61-1.29] for ages <60, 60-69, and >_70 years, respectively; P = 0.3 for interaction) or sexes (HRs, 0.71 [95% CI, 0.5 4-0.95] and 0.69 [0.56-0.8 4] in women and men, respectively; P = 0.8 for interaction). No differences in safety outcomes by age group or sex were observed.Limitations: This was a post hoc analysis with multiple comparisons.Conclusions: Canagliflozin consistently reduced the relative risk of kidney events in people with diabetic kidney disease in both sexes and across age subgroups. As a result of greater background risk, the absolute reduction in adverse kidney outcomes was greater in younger participants.Funding: This post hoc analysis of the CREDENCE trial was not funded. The CREDENCE study was sponsored by Janssen Research and Development and was conducted collaboratively by the sponsor, an academic-led steering committee, and an academic research organization, George Clinical.Trial Registration: The original CREDENCE trial was registered at ClinicalTrials.gov with study number NCT02065791
    corecore