369 research outputs found
Voicing Kinship with Machines: Diffractive Empathetic Listening to Synthetic Voices in Performance.
This thesis contributes to the field of voice studies by analyzing the design and production of synthetic voices in performance. The work explores six case studies, consisting of different performative experiences of the last decade (2010- 2020) that featured synthetic voice design. It focusses on the political and social impact of synthetic voices, starting from yet challenging the concepts of voice in the machine and voice of the machine. The synthetic voices explored are often playing the role of simulated artificial intelligences, therefore this thesis expands its questions towards technology at large. The analysis of the case studies follows new materialist and posthumanist premises, yet it tries to confute the patriarchal and neoliberal approach towards technological development through feminist and de-colonial approaches, developing a taxonomy for synthetic voices in performance. Chapter 1 introduces terms and explains the taxonomy. Chapter 2 looks at familiar representations of fictional AI. Chapter 3 introduces headphone theatre exploring immersive practices. Chapters 4 and 5 engage with chatbots. Chapter 6 goes in depth exploring Human and Artificial Intelligence interaction, whereas chapter 7 moves slightly towards music production and live art. The body of the thesis includes the work of Pipeline Theatre, Rimini Protokoll, Annie Dorsen, BeguÌm Erciyas, and Holly Herndon. The analysis is informed by posthumanism, feminism, and performance studies, starting from my own practice as sound designer and singer, looking at aesthetics of reproduction, audience engagement, and voice composition. This thesis has been designed to inspire and provoke practitioners and scholars to explore synthetic voices further, question predominant biases of binarism and acknowledge their importance in redefining technology
Optimal photonic indistinguishability tests in multimode networks
Particle indistinguishability is at the heart of quantum statistics that
regulates fundamental phenomena such as the electronic band structure of
solids, Bose-Einstein condensation and superconductivity. Moreover, it is
necessary in practical applications such as linear optical quantum computation
and simulation, in particular for Boson Sampling devices. It is thus crucial to
develop tools to certify genuine multiphoton interference between multiple
sources. Here we show that so-called Sylvester interferometers are near-optimal
for the task of discriminating the behaviors of distinguishable and
indistinguishable photons. We report the first implementations of integrated
Sylvester interferometers with 4 and 8 modes with an efficient, scalable and
reliable 3D-architecture. We perform two-photon interference experiments
capable of identifying indistinguishable photon behaviour with a Bayesian
approach using very small data sets. Furthermore, we employ experimentally this
new device for the assessment of scattershot Boson Sampling. These results open
the way to the application of Sylvester interferometers for the optimal
assessment of multiphoton interference experiments.Comment: 9+10 pages, 6+6 figures, added supplementary material, completed and
updated bibliograph
Cavernous haemangioma of the external auditory canal: clinical case and review of the literature
Although benign vascular lesions are frequent in the head and the neck region, clinical evidence of cavernous haemangioma of the external auditory canal is extremely rare; when present, the lesion invades the middle ear space. Herein, a rare case of a soft mass filling the external auditory canal, not involving the tympanic membrane, in a symptomatic 59-year-old male is described. Clinical and audiological characteristics, imaging studies and surgical treatment with histological evaluation are reported, which led to a diagnosis of a cavernous haemangioma. This is only the seventh case described in the literature, to date, not involving the tympanic membrane and the middle ear space. In addition, a review has been made of the relevant literature with respect to epidemiology, presentation, evaluation, pathology, and management options for haemangiomas arising in the external auditory canal
Experimental generalized quantum suppression law in Sylvester interferometers
Photonic interference is a key quantum resource for optical quantum
computation, and in particular for so-called boson sampling machines. In
interferometers with certain symmetries, genuine multiphoton quantum
interference effectively suppresses certain sets of events, as in the original
Hong-Ou-Mandel effect. Recently, it was shown that some classical and
semi-classical models could be ruled out by identifying such suppressions in
Fourier interferometers. Here we propose a suppression law suitable for
random-input experiments in multimode Sylvester interferometers, and verify it
experimentally using 4- and 8-mode integrated interferometers. The observed
suppression is stronger than what is observed in Fourier interferometers of the
same size, and could be relevant to certification of boson sampling machines
and other experiments relying on bosonic interference.Comment: 5 pages, 3 figures + 11 pages, 3 figures Supplementary Informatio
Experimental Scattershot Boson Sampling
Boson Sampling is a computational task strongly believed to be hard for
classical computers, but efficiently solvable by orchestrated bosonic
interference in a specialised quantum computer. Current experimental schemes,
however, are still insufficient for a convincing demonstration of the advantage
of quantum over classical computation. A new variation of this task,
Scattershot Boson Sampling, leads to an exponential increase in speed of the
quantum device, using a larger number of photon sources based on parametric
downconversion. This is achieved by having multiple heralded single photons
being sent, shot by shot, into different random input ports of the
interferometer. Here we report the first Scattershot Boson Sampling
experiments, where six different photon-pair sources are coupled to integrated
photonic circuits. We employ recently proposed statistical tools to analyse our
experimental data, providing strong evidence that our photonic quantum
simulator works as expected. This approach represents an important leap toward
a convincing experimental demonstration of the quantum computational supremacy.Comment: 8 pages, 5 figures (plus Supplementary Materials, 14 pages, 8
figures
Cosmology with variable parameters and effective equation of state for Dark Energy
A cosmological constant, Lambda, is the most natural candidate to explain the
origin of the dark energy (DE) component in the Universe. However, due to
experimental evidence that the equation of state (EOS) of the DE could be
evolving with time/redshift (including the possibility that it might behave
phantom-like near our time) has led theorists to emphasize that there might be
a dynamical field (or some suitable combination of them) that could explain the
behavior of the DE. While this is of course one possibility, here we show that
there is no imperative need to invoke such dynamical fields and that a variable
cosmological constant (including perhaps a variable Newton's constant too) may
account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on
Quantum Field Theory Under the Influence of External Conditions (QFEXT 05
Suppression law of quantum states in a 3D photonic fast Fourier transform chip
The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms
- âŠ