237 research outputs found

    Synchronization-Aware and Algorithm-Efficient Chance Constrained Optimal Power Flow

    Full text link
    One of the most common control decisions faced by power system operators is the question of how to dispatch generation to meet demand for power. This is a complex optimization problem that includes many nonlinear, non convex constraints as well as inherent uncertainties about future demand for power and available generation. In this paper we develop convex formulations to appropriately model crucial classes of nonlinearities and stochastic effects. We focus on solving a nonlinear optimal power flow (OPF) problem that includes loss of synchrony constraints and models wind-farm caused fluctuations. In particular, we develop (a) a convex formulation of the deterministic phase-difference nonlinear Optimum Power Flow (OPF) problem; and (b) a probabilistic chance constrained OPF for angular stability, thermal overloads and generation limits that is computationally tractable.Comment: 11 pages, 3 figure

    PowerModels.jl: An Open-Source Framework for Exploring Power Flow Formulations

    Full text link
    In recent years, the power system research community has seen an explosion of novel methods for formulating and solving power network optimization problems. These emerging methods range from new power flow approximations, which go beyond the traditional DC power flow by capturing reactive power, to convex relaxations, which provide solution quality and runtime performance guarantees. Unfortunately, the sophistication of these emerging methods often presents a significant barrier to evaluating them on a wide variety of power system optimization applications. To address this issue, this work proposes PowerModels, an open-source platform for comparing power flow formulations. From its inception, PowerModels was designed to streamline the process of evaluating different power flow formulations on shared optimization problem specifications. This work provides a brief introduction to the design of PowerModels, validates its implementation, and demonstrates its effectiveness with a proof-of-concept study analyzing five different formulations of the Optimal Power Flow problem
    • …
    corecore