440 research outputs found
Plasmon and grid resonances in the electromagnetic scattering by finite grids of silver nanowires
The problem of the H-polarized wave scattering by finite chains of circular nanowires is considered. A two-dimensional diffraction problem with rigorous boundary conditions is solved by partial separations of variables method using local polar coordinates of each scatterer. The obtained results demonstrate convergence of the algorithm and good agreement with data known for the conducting and dielectric cylinders. Plasmonic and grid resonances are found and calculated for grids from a big number of silver nanowires. This opens a way to the accurate numerical simulation of various finite configurations of wires met in today's nano and microsize photonic devices. © 2010 IEEE
Enhancement of plasmon resonances in the wave scattering by finite grids of circular silver wires
Using the field expansions in local coordinates and addition theorems for cylindrical functions, we consider the problem of the H-polarized plane wave scattered by a finite chain of circular wires. The absorption and scattering cross-sections are found numerically and plasmon and grating-type resonances are studied for the grids of silver nano-size wires. © 2010 IEEE
Resonances in the electromagnetic scattering by very large finite-periodic grids of circular dielectric wires
Diffraction of plane waves by infinite gratings is a classical research topic in the scattering theory. Using the Floquet theorem, one can reduce the infinite grating problem to the one-period problem. A characteristic feature of infinite-grating scattering is the drastic transformation of the scattering pattern and reflectance intensity if, in the process of changing the frequency or the angle of incidence, one of the Floquet harmonics is "passing over horizon." This phenomenon was first explained by Rayleigh [1] who studied theoretically the "anomalies" discovered experimentally by Wood [2]. In the simplest case of the normal incidence, these Rayleigh-Wood anomalies are observed if the period of the grating is multiple to the wavelength. © 2010 IEEE
Aldehyde dehydrogenase-1a1 induces oncogene suppressor genes in B cell populations
AbstractThe deregulation of B cell differentiation has been shown to contribute to autoimmune disorders, hematological cancers, and aging. We provide evidence that the retinoic acid-producing enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) is an oncogene suppressor in specific splenic IgG1+/CD19â and IgG1+/CD19+ B cell populations. Aldh1a1 regulated transcription factors during B cell differentiation in a sequential manner: 1) retinoic acid receptor alpha (Rara) in IgG1+/CD19â and 2) zinc finger protein Zfp423 and peroxisome proliferator-activated receptor gamma (Pparg) in IgG1+/CD19+ splenocytes. In Aldh1a1â/â mice, splenic IgG1+/CD19â and IgG1+/CD19+ B cells acquired expression of proto-oncogenic genes c-Fos, c-Jun, and Hoxa10 that resulted in splenomegaly. Human multiple myeloma B cell lines also lack Aldh1a1 expression; however, ectopic Aldh1a1 expression rescued Rara and Znf423 expressions in these cells. Our data highlight a mechanism by which an enzyme involved in vitamin A metabolism can improve B cell resistance to oncogenesis
Phyllosticta citricarpa and sister species of global importance to Citrus.
Several Phyllosticta species are known as pathogens of Citrus spp., and are responsible for various disease symptoms including leaf and fruit spots. One of the most important species is P. citricarpa, which causes a foliar and fruit disease called citrus black spot. The Phyllosticta species occurring on citrus can most effectively be distinguished from P. citricarpa by means of multilocus DNA sequence data. Recent studies also demonstrated P. citricarpa to be heterothallic, and reported successful mating in the laboratory. Since the domestication of citrus, different clones of P. citricarpa have escaped Asia to other continents via trade routes, with obvious disease management consequences. This pathogen profile represents a comprehensive literature review of this pathogen and allied taxa associated with citrus, focusing on identification, distribution, genomics, epidemiology and disease management. This review also considers the knowledge emerging from seven genomes of Phyllosticta spp., demonstrating unknown aspects of these species, including their mating behaviour.TaxonomyPhyllosticta citricarpa (McAlpine) Aa, 1973. Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Botryosphaeriales, Family Phyllostictaceae, Genus Phyllosticta, Species citricarpa.Host rangeConfirmed on more than 12 Citrus species, Phyllosticta citricarpa has only been found on plant species in the Rutaceae.Disease symptomsP. citricarpa causes diverse symptoms such as hard spot, virulent spot, false melanose and freckle spot on fruit, and necrotic lesions on leaves and twigs.Useful websitesDOE Joint Genome Institute MycoCosm portals for the Phyllosticta capitalensis (https://genome.jgi.doe.gov/Phycap1), P. citriasiana (https://genome.jgi.doe.gov/Phycit1), P. citribraziliensis (https://genome.jgi.doe.gov/Phcit1), P. citrichinaensis (https://genome.jgi.doe.gov/Phcitr1), P. citricarpa (https://genome.jgi.doe.gov/Phycitr1, https://genome.jgi.doe.gov/Phycpc1), P. paracitricarpa (https://genome.jgi.doe.gov/Phy27169) genomes. All available Phyllosticta genomes on MycoCosm can be viewed at https://genome.jgi.doe.gov/Phyllosticta
Genomic Deletion Marking an Emerging Subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula
P. 7465-7470Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate
regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific
to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this
deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly
related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal
expansion in France and the Iberian PeninsulaS
- âŠ