909 research outputs found

    The Dalhousie Dentistry Story: A Case for Proportionality, Professionalism, and the Promotion of Moral Character

    Get PDF
    La tribune de l'éditeur / Editor's Soapbo

    Stretching an heteropolymer

    Full text link
    We study the influence of some quenched disorder in the sequence of monomers on the entropic elasticity of long polymeric chains. Starting from the Kratky-Porod model, we show numerically that some randomness in the favoured angles between successive segments induces a change in the elongation versus force characteristics, and this change can be well described by a simple renormalisation of the elastic constant. The effective coupling constant is computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur

    Antiferromagnetism and singlet formation in underdoped high-Tc cuprates: Implications for superconducting pairing

    Full text link
    The extended t−Jt-J model is theoretically studied, in the context of hole underdoped cuprates. Based on results obtained by recent numerical studies, we identify the mean field state having both the antiferromagnetic and staggered flux resonating valence bond orders. The random-phase approximation is employed to analyze all the possible collective modes in this mean field state. In the static (Bardeen Cooper Schrieffer) limit justified in the weak coupling regime, we obtain the effective superconducting interaction between the doped holes at the small pockets located around k=(±π/2,±π/2)\bm{k}= (\pm \pi/2, \pm \pi/2). In contrast to the spin-bag theory, which takes into acccount only the antiferromagnetic order, this effective force is pair breaking for the pairing without the nodes in each of the small hole pocket, and is canceled out to be very small for the dx2−y2d_{x^2-y^2} pairing with nodes which is realized in the real cuprates. Therefore we conclude that no superconducting instability can occur when only the magnetic mechanism is considered. The relations of our work with other approaches are also discussed.Comment: 20 pages, 7 figures, REVTeX; final version accepted for publicatio

    PSS14 Cost-Effectiveness of Biologic Therapies for the Treatment of Moderate to Severe Psoriasis in Germany

    Get PDF

    Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase To Regulate Serum Response Factor (SRF)-Mediated Myod Transcription

    Get PDF
    We have previously reported that stable expression of a dominant negative Death Receptor 5 (dnDR5) in skeletal myoblasts results in decreased basal caspase activity and decreased mRNA and protein expression of the muscle regulatory transcription factor MyoD in growth medium (GM), resulting in inhibited differentation when myoblasts are then cultured in differentiation media (DM). Further, this decreased level of MyoD mRNA was not a consequence of altered message stability, but rather correlated with decreased acetylation of histones in the distal regulatory region (DRR) of the MyoD extended promoter known to control MyoD transcription. As serum response factor (SRF) is the transcription factor known to be responsible for basal MyoD expression in GM, we compared the level of SRF binding to the non-canonical serum response element (SRE) within the DRR in parental and dnDR5 expressing myoblasts. Herein, we report that stable expression of dnDR5 resulted in decreased levels of serum response factor (SRF) binding to the CArG box in the SRE of the DRR. Total SRF expression levels were not affected, but phosphorylation indicative of SRF activation was impaired. This decreased SRF phosphorylation correlated with decreased phosphorylation-induced activation of p38 kinase. Moreover, the aforementioned signaling events affected by expression of dnDR5 could be appropriately recapitulated using either a pharmacological inhibitor of caspase 3 or p38 kinase. Thus, our results have established a signaling pathway from DR5 through caspases to p38 kinase activation, to SRF activation and the basal expression of MyoD

    Exactly Integrable Dynamics of Interface between Ideal Fluid and Light Viscous Fluid

    Full text link
    It is shown that dynamics of the interface between ideal fluid and light viscous fluid is exactly integrable in the approximation of small surface slopes for two-dimensional flow. Stokes flow of viscous fluid provides a relation between normal velocity and pressure at interface. Surface elevation and velocity potential of ideal fluid are determined from two complex Burgers equations corresponding to analytical continuation of velocity potential at the interface into upper and lower complex half planes, respectively. The interface loses its smoothness if complex singularities (poles) reach the interface.Comment: 5 pages, 2 figures; submitted to Physics Letter

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    Parallel flow in Hele-Shaw cells with ferrofluids

    Full text link
    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of wave propagation for a given wavenumber. We note that the magnetic field creates an effective interaction between the solitons.Comment: 12 pages, Revtex, 2 figures, revised version (minor changes
    • …
    corecore