120 research outputs found
Safety and benefits of interventions to increase folate status in malaria-endemic areas.
For decades, folic acid has routinely been given to prevent or treat anaemia in children, pregnant women and people with sickle cell disease. However, there is no conclusive evidence that folate deficiency anaemia constitutes a public health problem in any of these groups. Industrial flour fortification is recommended and implemented in many countries to combat neural tube defects. Dietary folates or folic acid can antagonise the action of antifolate drugs that play a critical role in the prevention and treatment of malaria. Randomised trials have shown that folic acid supplementation increases the rate of treatment failures with sulfadoxine-pyrimethamine. The efficacy of antifolate drugs against Plasmodium is maximized in the absence of exogenous folic acid, suggesting that there is no safe minimum dose of ingested folic acid. We here review the safety and benefits of interventions to increase folate status in malaria-endemic countries. We conclude that formal cost-benefit analyses are required
Monitoring and evaluating the impact of national school-based deworming in Kenya: study design and baseline results.
BACKGROUND: An increasing number of countries in Africa and elsewhere are developing national plans for the control of neglected tropical diseases. A key component of such plans is school-based deworming (SBD) for the control of soil-transmitted helminths (STHs) and schistosomiasis. Monitoring and evaluation (M&E) of national programmes is essential to ensure they are achieving their stated aims and to evaluate when to reduce the frequency of treatment or when to halt it altogether. The article describes the M&E design of the Kenya national SBD programme and presents results from the baseline survey conducted in early 2012. METHODS: The M&E design involves a stratified series of pre- and post-intervention, repeat cross-sectional surveys in a representative sample of 200 schools (over 20,000 children) across Kenya. Schools were sampled based on previous knowledge of STH endemicity and were proportional to population size. Stool (and where relevant urine) samples were obtained for microscopic examination and in a subset of schools; finger-prick blood samples were collected to estimate haemoglobin concentration. Descriptive and spatial analyses were conducted. The evaluation measured both prevalence and intensity of infection. RESULTS: Overall, 32.4% of children were infected with at least one STH species, with Ascaris lumbricoides as the most common species detected. The overall prevalence of Schistosoma mansoni was 2.1%, while in the Coast Province the prevalence of S. haematobium was 14.8%. There was marked geographical variation in the prevalence of species infection at school, district and province levels. The prevalence of hookworm infection was highest in Western Province (25.1%), while A. lumbricoides and T. trichiura prevalence was highest in the Rift Valley (27.1% and 11.9%). The lowest prevalence was observed in the Rift Valley for hookworm (3.5%), in the Coast for A. lumbricoides (1.0%), and in Nyanza for T. trichiura (3.6%). The prevalence of S. mansoni was most common in Western Province (4.1%). CONCLUSIONS: The current findings are consistent with the known spatial ecology of STH and schistosome infections and provide an important empirical basis on which to evaluate the impact of regular mass treatment through the school system in Kenya
Clinical Calculator for Early Mortality in Metastatic Colorectal Cancer: An Analysis of Patients From 28 Clinical Trials in the Aide et Recherche en Cancérologie Digestive Database
Purpose: Factors contributing to early mortality after initiation of treatment of metastatic colorectal cancer are poorly understood.
Materials and Methods: Data from 22,654 patients enrolled in 28 randomized phase III trials contained in the ARCAD (Aide et Recherche en Cancérologie Digestive) database were pooled. Multivariable logistic regression models for 30-, 60-, and 90-day mortality were constructed, including clinically and statistically significant patient and disease factors and interaction terms. A calculator (nomogram) for 90-day mortality was developed and validated internally using bootstrapping methods and externally using a 10% random holdout sample from each trial. The impact of early progression on the likelihood of survival to 90 days was examined with time-dependent Cox proportional hazards models.
Results: Mortality rates were 1.4% at 30 days, 3.4% at 60 days, and 5.5% at 90 days. Among baseline factors, advanced age, lower body mass index, poorer performance status, increased number of metastatic sites, BRAF mutant status, and several laboratory parameters were associated with increased likelihood of early mortality. A multivariable model for 90-day mortality showed strong internal discrimination (C-index, 0.77) and good calibration across risk groups as well as accurate predictions in the external validation set, both overall and within patient subgroups.
Conclusion: A validated clinical nomogram has been developed to quantify the risk of early death for individual patients during initial treatment of metastatic colorectal cancer. This tool may be used for patient eligibility assessment or risk stratification in future clinical trials and to identify patients requiring more or less aggressive therapy and additional supportive measures during and after treatment
Impact of geography on prognostic outcomes of 21,509 patients with metastatic colorectal cancer enrolled in clinical trials: an ARCAD database analysis
Impact of geography on prognostic outcomes of 21,509 patients with metastatic colorectal cancer enrolled in clinical trials: an ARCAD database analysis
Show less
Jun Yin*, Shaheenah Dawood*, Romain Cohen, Jeff Meyers, John Zalcberg, Takayuki Yoshino, Matthew Seymour, Tim Maughan, Leonard Saltz, Eric Van Cutsem, Alan Venook, Hans-Joachim Schmoll, Richard Goldberg, Paulo Hoff, J. Randolph Hecht, Herbert Hurwitz, Cornelis Punt, Eduard Diaz Rubio, Miriam Koopman, Chiara Cremolini, Volker Heinemann, Christophe Tournigard, Carsten Bokemeyer, Charles Fuchs, Niall Tebbutt, John Souglakos, Jean-Yves Doulliard, Fairooz Kabbinavar, Benoist Chibaudel, Aimery de Gramont, Qian Shi, Axel Grothey, Richard AdamsFirst Published June 30, 2021 Research Article
https://doi.org/10.1177/17588359211020547
Article information
Article has an altmetric score of 7 Open AccessCreative Commons Attribution, Non Commercial 4.0 License
Article Information
Volume: 13
Article first published online: June 30, 2021; Issue published: January 1, 2021
Received: December 29, 2020; Accepted: May 05, 2021
Jun Yin*
Department of Health Sciences Research, Mayo Clinic, 200 First Street, SW Rochester, MN 55905, USA
Shaheenah Dawood*
Mediclinic City Hospital: North Wing, Dubai Health Care City, Dubai UAE
Romain Cohen
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
Jeff Meyers
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
John Zalcberg
School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
Takayuki Yoshino
Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
Matthew Seymour
NIHR Clinical Research Network, Leeds, UK
Tim Maughan
CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, UK
Leonard Saltz
Memory Sloan Kettering Cancer Center, New York, NY, USA
Eric Van Cutsem
Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
Alan Venook
Department of Medicine, The University of California San Francisco, San Francisco, CA, USA
Hans-Joachim Schmoll
Klinik fur Innere Med IV, University Clinic Halle, Saale, Germany
Richard Goldberg
Department of Oncology, West Virginia University, Morgantown, WV, USA
Paulo Hoff
Centro de Oncologia de Brasilia do Sirio Libanes: Unidade Lago Sul, Siro Libanes, Brazil
J. Randolph Hecht
Ronald Reagan UCLA Medical Center, UCLS Medical Center, Santa Monica, CA, USA
Herbert Hurwitz
Duke Cancer Institute, Duke University, Durham, NC, USA
Cornelis Punt
Department of Medical Oncology, University of Amsterdam, Amsterdam, The Netherlands
Eduard Diaz Rubio
Department Oncology, Hospital ClĂnico San Carlos, Madrid, Spain
Miriam Koopman
Department of Medical Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
Chiara Cremolini
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Volker Heinemann
Department of Medical Oncology and Comprehensive Cancer Center, University of Munich, Munich, Germany
Christophe Tournigard
Hopital Henri Mondor, Creteil, France
Carsten Bokemeyer
Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Charles Fuchs
Director of Yale Cancer Center, Boston, MA, USA
Niall Tebbutt
Sydney Medical School, University of Sydney, Sydney, Australia
John Souglakos
University of Crete, Heraklion, Greece
Jean-Yves Doulliard
University of Nantes Medical School, Nantes, France
Fairooz Kabbinavar
UCLA Medical Center, Santa Monica, CA, USA
Benoist Chibaudel
Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
Aimery de Gramont
Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
Qian Shi
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
Axel Grothey
West Cancer Center, Germantown, TN, USA
Richard Adams
Cardiff University and Velindre Cancer Center, Cardiff, UK
Corresponding Author:
[email protected]
*Co-first authors.
https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Abstract
Background:
Benchmarking international cancer survival differences is necessary to evaluate and improve healthcare systems. Our aim was to assess the potential regional differences in outcomes among patients with metastatic colorectal cancer (mCRC) participating in international randomized clinical trials (RCTs).
Design:
Countries were grouped into 11 regions according to the World Health Organization and the EUROCARE model. Meta-analyses based on individual patient data were used to synthesize data across studies and regions and to conduct comparisons for outcomes in a two-stage random-effects model after adjusting for age, sex, performance status, and time period. We used mCRC patients enrolled in the first-line RCTs from the ARCAD database, which provided enrolling country information. There were 21,509 patients in 27 RCTs included across the 11 regions.
Results:
Main outcomes were overall survival (OS) and progression-free survival (PFS). Compared with other regions, patients from the United Kingdom (UK) and Ireland were proportionaly over-represented, older, with higher performance status, more frequently male, and more commonly not treated with biological therapies. Cohorts from central Europe and the United States (USA) had significantly longer OS compared with those from UK and Ireland (p = 0.0034 and p < 0.001, respectively), with median difference of 3–4 months. The survival deficits in the UK and Ireland cohorts were, at most, 15% at 1 year. No evidence of a regional disparity was observed for PFS. Among those treated without biological therapies, patients from the UK and Ireland had shorter OS than central Europe patients (p < 0.001).
Conclusions:
Significant international disparities in the OS of cohorts of mCRC patients enrolled in RCTs were found. Survival of mCRC patients included in RCTs was consistently lower in the UK and Ireland regions than in central Europe, southern Europe, and the USA, potentially attributed to greater overall population representation, delayed diagnosis, and reduced availability of therapies
Evaluation of intratumoral response heterogeneity in metastatic colorectal cancer and Its impact on patient overall survival: findings from 10,551 patients in the ARCAD database
Metastatic colorectal cancer (mCRC) is a heterogeneous disease that can evoke discordant responses to therapy among different lesions in individual patients. The Response Evaluation Criteria in Solid Tumors (RECIST) criteria do not take into consideration response heterogeneity. We explored and developed lesion-based measurement response criteria to evaluate their prognostic effect on overall survival (OS). Patients and Methods: Patients enrolled in 17 first-line clinical trials, who had mCRC with ≥ 2 lesions at baseline, and a restaging scan by 12 weeks were included. For each patient, lesions were categorized as a progressing lesion (PL: > 20% increase in the longest diameter (LD)), responding lesion (RL: > 30% decrease in LD), or stable lesion (SL: neither PL nor RL) based on the 12-week scan. Lesion-based response criteria were defined for each patient as follows: PL only, SL only, RL only, and varied responses (mixture of RL, SL, and PL). Lesion-based response criteria and OS were correlated using stratified multivariable Cox models. The concordance between OS and classifications was measured using the C statistic. Results: Among 10,551 patients with mCRC from 17 first-line studies, varied responses were noted in 51.6% of patients, among whom, 3.3% had RL/PL at 12 weeks. Among patients with RL/SL, 52% had stable disease (SD) by RECIST 1.1, and they had a longer OS (median OS (mOS) = 19.9 months) than those with SL only (mOS = 16.8 months, HR (95% CI) = 0.81 (0.76, 0.85), p < 0.001), although a shorter OS than those with RL only (mOS = 25.8 months, HR (95% CI) = 1.42 (1.32, 1.53), p < 0.001). Among patients with SL/PL, 74% had SD by RECIST 1.1, and they had a longer OS (mOS = 9.0 months) than those with PL only (mOS = 8.0 months, HR (95% CI) = 0.75 (0.57, 0.98), p = 0.040), yet a shorter OS than those with SL only (mOS = 16.8 months, HR (95% CI) = 1.98 (1.80, 2.18), p < 0.001). These associations were consistent across treatment regimen subgroups. The lesion-based response criteria showed slightly higher concordance than RECIST 1.1, although it was not statistically significant. Conclusion: Varied responses at first restaging are common among patients receiving first-line therapy for mCRC. Our lesion-based measurement criteria allowed for better mortality discrimination, which could potentially be informative for treatment decision-making and influence patient outcomes
Evaluation of Intratumoral Response Heterogeneity in Metastatic Colorectal Cancer and Its Impact on Patient Overall Survival: Findings from 10,551 Patients in the ARCAD Database
Metastatic colorectal cancer (mCRC) is a heterogeneous disease that can evoke discordant responses to therapy among different lesions in individual patients. The Response Evaluation Criteria in Solid Tumors (RECIST) criteria do not take into consideration response heterogeneity. We explored and developed lesion-based measurement response criteria to evaluate their prognostic effect on overall survival (OS). Patients and Methods: Patients enrolled in 17 first-line clinical trials, who had mCRC with ≥ 2 lesions at baseline, and a restaging scan by 12 weeks were included. For each patient, lesions were categorized as a progressing lesion (PL: > 20% increase in the longest diameter (LD)), responding lesion (RL: > 30% decrease in LD), or stable lesion (SL: neither PL nor RL) based on the 12-week scan. Lesion-based response criteria were defined for each patient as follows: PL only, SL only, RL only, and varied responses (mixture of RL, SL, and PL). Lesion-based response criteria and OS were correlated using stratified multivariable Cox models. The concordance between OS and classifications was measured using the C statistic. Results: Among 10,551 patients with mCRC from 17 first-line studies, varied responses were noted in 51.6% of patients, among whom, 3.3% had RL/PL at 12 weeks. Among patients with RL/SL, 52% had stable disease (SD) by RECIST 1.1, and they had a longer OS (median OS (mOS) = 19.9 months) than those with SL only (mOS = 16.8 months, HR (95% CI) = 0.81 (0.76, 0.85), p < 0.001), although a shorter OS than those with RL only (mOS = 25.8 months, HR (95% CI) = 1.42 (1.32, 1.53), p < 0.001). Among patients with SL/PL, 74% had SD by RECIST 1.1, and they had a longer OS (mOS = 9.0 months) than those with PL only (mOS = 8.0 months, HR (95% CI) = 0.75 (0.57, 0.98), p = 0.040), yet a shorter OS than those with SL only (mOS = 16.8 months, HR (95% CI) = 1.98 (1.80, 2.18), p < 0.001). These associations were consistent across treatment regimen subgroups. The lesion-based response criteria showed slightly higher concordance than RECIST 1.1, although it was not statistically significant. Conclusion: Varied responses at first restaging are common among patients receiving first-line therapy for mCRC. Our lesion-based measurement criteria allowed for better mortality discrimination, which could potentially be informative for treatment decision-making and influence patient outcomes
XVI. Chansons populaires recueillies à Courseulles-sur-Mer (arr. de Caen, Calvados) en août 1882.
Benoist Charles. XVI. Chansons populaires recueillies à Courseulles-sur-Mer (arr. de Caen, Calvados) en août 1882.. In: Romania, tome 13 n°50-51, 1884. pp. 429-434
- …