40 research outputs found

    Integrated modeling and validation for phase change with natural convection

    Full text link
    Water-ice systems undergoing melting develop complex spatio-temporal interface dynamics and a non-trivial temperature field. In this contribution, we present computational aspects of a recently conducted validation study that aims at investigating the role of natural convection for cryo-interface dynamics of water-ice. We will present a fixed grid model known as the enthalpy porosity method. It is based on introducing a phase field and employs mixture theory. The resulting PDEs are solved using a finite volume discretization. The second part is devoted to experiments that have been conducted for model validation. The evolving water-ice interface is tracked based on optical images that shows both the water and the ice phase. To segment the phases, we use a binary Mumford Shah method, which yields a piece-wise constant approximation of the imaging data. Its jump set is the reconstruction of the measured phase interface. Our combined simulation and segmentation effort finally enables us to compare the modeled and measured phase interfaces continuously. We conclude with a discussion of our findings

    Freezing of a binary alloy saturating a packed bed of spheres

    Full text link
    corecore