31 research outputs found

    Experimental Simulation of the Effects of an Initial Antibiotic Treatment on a Subsequent Treatment after Initial Therapy Failure

    Get PDF
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Received: 24 October 2013; in revised form: 23 January 2014 / Accepted: 29 January 2014 / Published: 17 February 2014 Abstract: Therapy failure of empirical antibiotic treatments prescribed by primary care physicians occurs commonly. The effect of such a treatment on the susceptibility to second line antimicrobial drugs is unknown. Resistance to amoxicillin was rapidly induced or selected in E. coli at concentrations expected in the patient's body. Strains with reduced susceptibility outcompeted the wild-type whenever antibiotics were present, even in low concentrations that did not affect the growth rates of both strains. Exposure of E. coli to amoxicillin caused moderate resistance to cefotaxime. The combined evidence suggests that initial treatment by amoxicillin has a negative effect on subsequent therapy with beta-lactam antibiotics

    Effects of Therapeutical and Reduced Levels of Antibiotics on the Fraction of Antibiotic-Resistant Strains of Escherichia coli

    Get PDF
    Development of antibiotic resistance in the microbiota of farm animals and spread of antibiotic-resistant bacteria in the agricultural sector not only threaten veterinary use of antibiotics, but jeopardize human health care as well. The effects of exposure to antibiotics on spread and development of antibiotic resistance in Escherichia coli from the chicken gut were studied. Groups of 15 pullets each were exposed under strictly controlled conditions to a 2-day course of amoxicillin, oxytetracycline, or enrofloxacin, added to the drinking water either at full therapeutic dose, 75% of that, or at the carry-over level of 2.5%. During treatment and for 12 days afterwards, the minimal inhibitory concentration (MIC) for the applied antibiotics of E. coli strains isolated from cloacal swabs was measured. The full therapeutic dose yielded the highest percentage of resistant strains during and immediately after exposure. After 12 days without antibiotics, only strains from chickens that were given amoxicillin were significantly more often resistant than the untreated control. Strains isolated from pullets exposed to carry-over concentrations were only for a few days more often resistant than those from the control. These results suggest that, if chickens must be treated with antibiotics, a short intensive therapy is preferable. Even short-term exposure to carry-over levels of antibiotics can be a risk for public health, as also under those circumstances some selection for resistance takes place

    Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli

    Get PDF
    Abstract Background The effect of mutations conferring antibiotic resistance can depend on the genetic background. To determine if a previously de novo acquired antibiotic resistance influences the adaptation to a second antibiotic, antibiotic resistance was selected for by exposure to stepwise increasing sublethal levels of amoxicillin, enrofloxacin, kanamycin, or tetracycline. E. coli populations adapted to either a single or two antibiotics sequentially were characterized using whole genome population sequencing and MIC measurements. Results In a wild-type background, adaptation to any of the antibiotics resulted in the appearance of well-known mutations, as well as a number of mutated genes not known to be associated with antibiotic resistance. Development of a second resistance in a strain with an earlier acquired resistance to a different antibiotic did not always result in the appearance of all mutations associated with resistance in a wild-type background. In general, a more varied set of mutations was acquired during secondary adaptation. The ability of E. coli to maintain the first resistance during this process depended on the combination of antibiotics used. The maintenance of mutations associated with resistance to the first antibiotic did not always predict the residual MIC for that compound. Conclusions In general, the data presented here indicate that adaptation to each antibiotic is unique and independent. The mutational trajectories available in already resistant cells appear more varied than in wild-type cells, indicating that the genetic background of E. coli influences resistance development. The observed mutations cannot always fully explain the resistance pattern observed, indicating a crucial role for adaptation on the gene expression level in de novo acquisition of antibiotic resistance

    Compensation of the Metabolic Costs of Antibiotic Resistance by Physiological Adaptation in Escherichia coli

    No full text
    Antibiotic resistance is often associated with metabolic costs. To investigate the metabolic consequences of antibiotic resistance, the genomic and transcriptomic profiles of an amoxicillin-resistant Escherichia coli strain and the wild type it was derived from were compared. A total of 125 amino acid substitutions and 7 mutations that were located <1,000 bp upstream of differentially expressed genes were found in resistant cells. However, broad induction and suppression of genes were observed when comparing the expression profiles of resistant and wild-type cells. Expression of genes involved in cell wall maintenance, DNA metabolic processes, cellular stress response, and respiration was most affected in resistant cells regardless of the absence or presence of amoxicillin. The SOS response was downregulated in resistant cells. The physiological effect of the acquisition of amoxicillin resistance in cells grown in chemostat cultures consisted of an initial increase in glucose consumption that was followed by an adaptation process. Furthermore, no difference in maintenance energy was observed between resistant and sensitive cells. In accordance with the transcriptomic profile, exposure of resistant cells to amoxicillin resulted in reduced salt and pH tolerance. Taken together, the results demonstrate that the acquisition of antibiotic resistance in E. coli is accompanied by specifically reorganized metabolic networks in order to circumvent metabolic costs. The overall effect of the acquisition of resistance consists not so much of an extra energy requirement, but more a reduced ecological range

    Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli

    No full text
    Summary: The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis
    corecore