44 research outputs found

    Modelling phosphorus fluxes in Loweswater

    Get PDF
    1. This is the final report to the Loweswater Care Project (in support of the Catchment Restoration Fund for England) ECRC-ENSIS Project 298, 'Loweswater 12-13'. The study was concerned with the spatial and temporal concentrations of sediment phosphorus (P) in the lake and the use of P measurements from the water column and inflow and outflow samples to derive a simple mass balance model for P in the lake. 2. A review of published and unpublished literature on Loweswater highlighted trends in water chemistry since the mid-eighteenth century. Land use and farming practises have changed over the past 200 years which have led to increased nutrient loading to the lake with significant increases occurring in the mid part of the last century. Agricultural intensification is likely to be a significant cause of the problem as well as inadequate septic tank management. Local management efforts, led by the Loweswater Care Project, has sought to reduce the primary sources of nutrients reaching the lake, but total phosphorus (TP) concentrations in the lake remain higher than desired. 3. Temperature and dissolved oxygen (DO) profiling confirmed that the site stratified in summer with major changes in DO occurring below a depth of 8 m. The deeper waters were almost entirely anoxic. During stratification the maximum TP value was recorded at the lake bottom. This is a clear indication that P is being released from the lake bed during summer stratification. 4. Analysis of the stream water from the Dub Beck inflow (data for 2013), shows that P influx remains high enough to explain the elevated lake water P concentrations, despite considerable efforts to reduce catchment P sources. 5. Analysis of the water column P profiles shows that P release from the sediment is only a minor contribution to the P load. While the sediment core data reveals a substantial pool of P in the sediment very little of this should be released each year to the water column. In 2013 it is estimated that more than 90% of the P came from the catchment and only ~10% from the sediment. 6. As with all modelling exercises there are uncertainties inherent in the approach. In this case the model output is based on a single year of input data for the inflow P flux calculations and it would be preferable to have a longer data series to inform the modelling. Inflow fluxes are highly dependent on flow conditions and here, in the absence of flow data from Dub Beck, we used data from a nearby stream. Further, the monthly sampling has resulted in most samples being taken in low flow conditions, thus missing potential storm flow conditions. Finally, stream input information is restricted to Dub Beck, and contributions from the other stream is unknown. 7. Nevertheless, the results from the modelling are clear and on that basis we conclude that the priority is for P loading to the lake to be reduced by better catchment management and that lake manipulation is not warranted. Integrated catchment management supported by modelling together with local stakeholder engagement should provide the most effective means of improving the condition of the lake

    A Bispecific Antibody Based Assay Shows Potential for Detecting Tuberculosis in Resource Constrained Laboratory Settings

    Get PDF
    The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings
    corecore