38 research outputs found
Single-epitope recognition imaging of native chromatin
Β© 2008 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Monocyte Scintigraphy in Rheumatoid Arthritis: The Dynamics of Monocyte Migration in Immune-Mediated Inflammatory Disease
Background: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man. Methods/Principal Findings: We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99m-Tc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4x10(-3) (0.95-5.1x10(-3)) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion. Conclusions/Significance: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention
Assessment of splenic function
Hyposplenic patients are at risk of overwhelming post-splenectomy infection (OPSI), which carries mortality of up to 70%. Therefore, preventive measures are warranted. However, patients with diminished splenic function are difficult to identify. In this review we discuss immunological, haematological and scintigraphic parameters that can be used to measure splenic function. IgM memory B cells are a potential parameter for assessing splenic function; however, more studies are necessary for its validation. Detection of HowellβJolly bodies does not reflect splenic function accurately, whereas determining the percentage of pitted erythrocytes is a well-evaluated method and seems a good first-line investigation for assessing splenic function. When assessing spleen function, 99mTc-labelled, heat-altered, autologous erythrocyte scintigraphy with multimodality single photon emission computed tomography (SPECT)-CT technology is the best approach, as all facets of splenic function are evaluated. In conclusion, although scintigraphic methods are most reliable, they are not suitable for screening large populations. We therefore recommend using the percentage of pitted erythrocytes, albeit suboptimal, as a first-line investigation and subsequently confirming abnormal readings by means of scintigraphy. More studies evaluating the value of potentially new markers are needed
Laminar flow cells for single-molecule studies of DNA-protein interactions
Microfluidic flow cells are used in single-molecule experiments, enabling measurements to be made with high spatial and temporal resolution. We discuss the fundamental processes affecting flow cell operation and describe the flow cells in use at present for studying the interaction of optically trapped or mechanically isolated, single DNA molecules with proteins. To assist the experimentalist in flow cell selection, we review the construction techniques and materials used to fabricate both single-and multiple-channel flow cells and the advantages of each design for different experiments