94 research outputs found

    Two-component Analogue of Two-dimensional Long Wave-Short Wave Resonance Interaction Equations: A Derivation and Solutions

    Full text link
    The two-component analogue of two-dimensional long wave-short wave resonance interaction equations is derived in a physical setting. Wronskian solutions of the integrable two-component analogue of two-dimensional long wave-short wave resonance interaction equations are presented.Comment: 16 pages, 9 figures, revised version; The pdf file including all figures: http://www.math.utpa.edu/kmaruno/yajima.pd

    Instability and Evolution of Nonlinearly Interacting Water Waves

    Full text link
    We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schroedinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large amplitude freak waves in deep water.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Stable periodic waves in coupled Kuramoto-Sivashinsky - Korteweg-de Vries equations

    Full text link
    Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky - Korteweg-de Vries (KS-KdV) equation, which is linearly coupled to an extra linear dissipative equation. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value U of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L,U), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.Comment: a latex text file and 16 eps files with figures. Journal of the Physical Society of Japan, in pres

    Gurevich-Zybin system

    Full text link
    We present three different linearizable extensions of the Gurevich-Zybin system. Their general solutions are found by reciprocal transformations. In this paper we rewrite the Gurevich-Zybin system as a Monge-Ampere equation. By application of reciprocal transformation this equation is linearized. Infinitely many local Hamiltonian structures, local Lagrangian representations, local conservation laws and local commuting flows are found. Moreover, all commuting flows can be written as Monge-Ampere equations similar to the Gurevich-Zybin system. The Gurevich-Zybin system describes the formation of a large scale structures in the Universe. The second harmonic wave generation is known in nonlinear optics. In this paper we prove that the Gurevich-Zybin system is equivalent to a degenerate case of the second harmonic generation. Thus, the Gurevich-Zybin system is recognized as a degenerate first negative flow of two-component Harry Dym hierarchy up to two Miura type transformations. A reciprocal transformation between the Gurevich-Zybin system and degenerate case of the second harmonic generation system is found. A new solution for the second harmonic generation is presented in implicit form.Comment: Corrected typos and misprint

    Vlasov moment flows and geodesics on the Jacobi group

    Full text link
    By using the moment algebra of the Vlasov kinetic equation, we characterize the integrable Bloch-Iserles system on symmetric matrices (arXiv:math-ph/0512093) as a geodesic flow on the Jacobi group. We analyze the corresponding Lie-Poisson structure by presenting a momentum map, which both untangles the bracket structure and produces particle-type solutions that are inherited from the Vlasov-like interpretation. Moreover, we show how the Vlasov moments associated to Bloch-Iserles dynamics correspond to particular subgroup inclusions into a group central extension (first discovered in arXiv:math/0410100), which in turn underlies Vlasov kinetic theory. In the most general case of Bloch-Iserles dynamics, a generalization of the Jacobi group also emerges naturally.Comment: 45 page

    Asymptotic solution for the two-body problem with constant tangencial acceleration

    Full text link
    An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error

    Instabilities of one-dimensional stationary solutions of the cubic nonlinear Schrodinger equation

    Full text link
    The two-dimensional cubic nonlinear Schrodinger equation admits a large family of one-dimensional bounded traveling-wave solutions. All such solutions may be written in terms of an amplitude and a phase. Solutions with piecewise constant phase have been well studied previously. Some of these solutions were found to be stable with respect to one-dimensional perturbations. No such solutions are stable with respect to two-dimensional perturbations. Here we consider stability of the larger class of solutions whose phase is dependent on the spatial dimension of the one-dimensional wave form. We study the spectral stability of such nontrivial-phase solutions numerically, using Hill's method. We present evidence which suggests that all such nontrivial-phase solutions are unstable with respect to both one- and two-dimensional perturbations. Instability occurs in all cases: for both the elliptic and hyperbolic nonlinear Schrodinger equations, and in the focusing and defocusing case.Comment: Submitted: 13 pages, 3 figure

    Dispersionful analogues of Benney's equations and NN-wave systems

    Full text link
    We recall Krichever's construction of additional flows to Benney's hierarchy, attached to poles at finite distance of the Lax operator. Then we construct a ``dispersionful'' analogue of this hierarchy, in which the role of poles at finite distance is played by Miura fields. We connect this hierarchy with NN-wave systems, and prove several facts about the latter (Lax representation, Chern-Simons-type Lagrangian, connection with Liouville equation, τ\tau-functions).Comment: 12 pages, latex, no figure

    Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I

    Full text link
    We propose an algorithmic procedure i) to study the ``distance'' between an integrable PDE and any discretization of it, in the small lattice spacing epsilon regime, and, at the same time, ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete informations on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general 10-parameter family of discretizations of the nonlinear Schroedinger equation, consists of the following three steps: i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in epsilon, following the Degasperis - Manakov - Santini procedure; ii) the application, to such expansion, of the Degasperis - Procesi (DP) integrability test, to test the asymptotic integrability properties of the discrete system and its ``distance'' from its continuous limit; iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.Comment: 34 pages, no figur

    A phase-space approach to non-stationary nonlinear systems

    Full text link
    A phase-space formulation of non-stationary nonlinear dynamics including both Hamiltonian (e.g., quantum-cosmological) and dissipative (e.g., dissipative laser) systems reveals an unexpected affinity between seemly different branches of physics such as nonlinear dynamics far from equilibrium, statistical mechanics, thermodynamics, and quantum physics. One of the key insights is a clear distinction between the "vacuum" and "squeezed" states of a non-stationary system. For a dissipative system, the "squeezed state" (or the coherent "concentrate") mimics vacuum one and can be very attractable in praxis, in particular, for energy harvesting at the ultrashort time scales in a laser or "material laser" physics including quantum computing. The promising advantage of the phase-space formulation of the dissipative soliton dynamics is the possibility of direct calculation of statistical (including quantum) properties of coherent, partially-coherent, and non-coherent dissipative structure without numerically consuming statistic harvesting.Comment: 11th CHAOS Conference, 5 - 8 June 2018, Rome, Italy; 13 pages, 9 figure
    corecore