39,764 research outputs found

    A Method of Areas for Manipulating the Entanglement Properties of One Copy of a Two-Particle Pure State

    Get PDF
    We consider the problem of how to manipulate the entanglement properties of a general two-particle pure state, shared between Alice and Bob, by using only local operations at each end and classical communication between Alice and Bob. A method is developed in which this type of problem is found to be equivalent to a problem involving the cutting and pasting of certain shapes along with a certain colouring problem. We consider two problems. Firstly we find the most general way of manipulating the state to obtain maximally entangled states. After such a manipulation the entangled state |11>+|22>+....|mm> is obtained with probability p_m. We obtain an expression for the optimal average entanglement. Also, some results of Lo and Popescu pertaining to this problem are given simple geometric proofs. Secondly, we consider how to manipulate one two particle entangled pure state to another with certainty. We derive Nielsen's theorem (which states the necessary and sufficient condition for this to be possible) using the method of areas.Comment: 29 pages, 9 figures. Section 2.4 clarified. Error in second colouring theorem (section 3.2) corrected. Some other minor change

    Entangled Mixed States and Local Purification

    Full text link
    Linden, Massar and Popescu have recently given an optimization argument to show that a single two-qubit Werner state, or any other mixture of the maximally entangled Bell states, cannot be purified by local operations and classical communications. We generalise their result and give a simple explanation. In particular, we show that no purification scheme using local operations and classical communications can produce a pure singlet from any mixed state of two spin-1/2 particles. More generally, no such scheme can produce a maximally entangled state of any pair of finite-dimensional systems from a generic mixed state. We also show that the Werner states belong to a large class of states whose fidelity cannot be increased by such a scheme.Comment: 3 pages, Latex with Revtex. Small clarifications and reference adde

    Thermodynamics and the Measure of Entanglement

    Full text link
    We point out formal correspondences between thermodynamics and entanglement. By applying them to previous work, we show that entropy of entanglement is the unique measure of entanglement for pure states.Comment: 8 pages, RevTeX; edited for clarity, additional references, to appear as a Rapid Communication in Phys. Rev.

    Two qubit copying machine for economical quantum eavesdropping

    Get PDF
    We study the mapping which occurs when a single qubit in an arbitrary state interacts with another qubit in a given, fixed state resulting in some unitary transformation on the two qubit system which, in effect, makes two copies of the first qubit. The general problem of the quality of the resulting copies is discussed using a special representation, a generalization of the usual Schmidt decomposition, of an arbitrary two-dimensional subspace of a tensor product of two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can reproduce the results of any two qubit copying machine of this type. A simple stochastic generalization (using a ``classical'' random signal) of the copying machine is also considered. These copying machines provide simple embodiments of previously proposed optimal eavesdropping schemes for the BB84 and B92 quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure

    Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    Get PDF
    We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo

    Duality of privacy amplification against quantum adversaries and data compression with quantum side information

    Full text link
    We show that the tasks of privacy amplification against quantum adversaries and data compression with quantum side information are dual in the sense that the ability to perform one implies the ability to perform the other. These are two of the most important primitives in classical information theory, and are shown to be connected by complementarity and the uncertainty principle in the quantum setting. Applications include a new uncertainty principle formulated in terms of smooth min- and max-entropies, as well as new conditions for approximate quantum error correction.Comment: v2: Includes a derivation of an entropic uncertainty principle for smooth min- and max-entropies. Discussion of the Holevo-Schumacher-Westmoreland theorem remove

    Quantum privacy amplification and the security of quantum cryptography over noisy channels

    Get PDF
    Existing quantum cryptographic schemes are not, as they stand, operable in the presence of noise on the quantum communication channel. Although they become operable if they are supplemented by classical privacy-amplification techniques, the resulting schemes are difficult to analyse and have not been proved secure. We introduce the concept of quantum privacy amplification and a cryptographic scheme incorporating it which is provably secure over a noisy channel. The scheme uses an `entanglement purification' procedure which, because it requires only a few quantum Controlled-Not and single-qubit operations, could be implemented using technology that is currently being developed. The scheme allows an arbitrarily small bound to be placed on the information that any eavesdropper may extract from the encrypted message.Comment: 13 pages, Latex including 2 postcript files included using psfig macro

    Electrodynamics of Bose-Einstein condensates in angular motion

    Get PDF
    A theory determining the electric and magnetic properties of vortex states in Bose-Einstein condensates (BECs) is presented. The principal ingredient is the Lagrangian of the system which we derive correct to the first order in the atomic centre of mass velocity. For the first time using centre of mass coordinates, a gauge transformation is performed and relevant relativistic corrections are included. The Lagrangian is symmetric in the electric and magnetic aspects of the problem and includes two key interaction terms, namely the Aharanov-Casher and the Roentgen interaction terms. The constitutive relations, which link the electromagnetic fields to the matter fields via their electric polarisation and magnetisation, follow from the Lagrangian as well as the corresponding Hamiltonian. These relations, together with a generalised Gross-Pitaevskii equation, determine the magnetic (electric) monopole charge distributions accompanying an order n vortex state when the constituent atoms are characterised by an electric dipole (magnetic dipole). Field distributions associated with electric dipole active (magnetic dipole active) BECs in a vortex state are evaluated for an infinite- and a finite-length cylindrical BEC. The predictd monopole charge distributions, both electric and magnetic, automatically satisfy the requirement of global charge neutrality and the derivations highlight the exact symmetry between the electric and magnetic properties. Order of magnitude estimates of the effects are given for an atomic gas BEC, superfluid helium and a spin-polarised hydrogen BEC.Comment: 23 pages, 2 figures, submitted to Journal of Optics

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure
    • …
    corecore