31,955 research outputs found

    When only two thirds of the entanglement can be distilled

    Get PDF
    We provide an example of distillable bipartite mixed state such that, even in the asymptotic limit, more pure-state entanglement is required to create it than can be distilled from it. Thus, we show that the irreversibility in the processes of formation and distillation of bipartite states, recently proved in [G. Vidal, J.I. Cirac, Phys. Rev. Lett. 86, (2001) 5803-5806], is not limited to bound-entangled states.Comment: 4 pages, revtex, 1 figur

    Study made of resistance of stainless steels to zinc-vapor corrosion

    Get PDF
    Study of the corrosion resistance of several stainless steels to zinc vapor revealed that some stainless steels could be employed for use in zinc processing equipment housings or vapor lines

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    Get PDF
    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents

    QKD in Standard Optical Telecommunications Networks

    Get PDF
    To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network

    Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer

    Full text link
    The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 year maps produced by the COBE DMR. The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with P(k)knP(k) \propto k^n. Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 \leq \ell \lsim 30, the best fitting value of the spectral index is n=1.250.45+0.4n = 1.25^{+0.4}_{-0.45} with the Harrison-Zeldovich value n=1n = 1 approximately 0.5σ\sigma below the best fit. For 3 \leq \ell \lsim 19, the best fit is n=1.460.44+0.39n = 1.46^{+0.39}_{-0.44}. Comparing the COBE DMR ΔT/T\Delta T/T at small \ell to the ΔT/T\Delta T/T at 50\ell \approx 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n=1n = 1.Comment: 22 pages of LaTex using aaspp.sty and epsf.sty with appended Postscript figures, COBE Preprint 94-0

    Unconditionally secure quantum bit commitment is impossible

    Get PDF
    The claim of quantum cryptography has always been that it can provide protocols that are unconditionally secure, that is, for which the security does not depend on any restriction on the time, space or technology available to the cheaters. We show that this claim does not hold for any quantum bit commitment protocol. Since many cryptographic tasks use bit commitment as a basic primitive, this result implies a severe setback for quantum cryptography. The model used encompasses all reasonable implementations of quantum bit commitment protocols in which the participants have not met before, including those that make use of the theory of special relativity.Comment: 4 pages, revtex. Journal version replacing the version published in the proceedings of PhysComp96. This is a significantly improved version which emphasis the generality of the resul

    Entanglement required in achieving entanglement-assisted channel capacities

    Full text link
    Entanglement shared between the two ends of a quantum communication channel has been shown to be a useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to asymptotically achieve the capacity. This is achieved by introducing a class of entanglement-assisted quantum codes. Codes for classes of qubit channels are shown to achieve the quantum entanglement-assisted channel capacity when an amount of shared entanglement per channel given by, E = 1 - Q_E, is provided. It is also shown that for very noisy channels, as the capacities become small, the amount of required entanglement converges for the classical and quantum capacities.Comment: 9 pages, 2 figures, RevTex

    Universal Properties of Linear Magnetoresistance in Strongly Disordered Semiconductors

    Full text link
    Linear magnetoresistance occurs in semiconductors as a consequence of strong electrical disorder and is characterized by nonsaturating magnetoresistance that is proportional to the applied magnetic field. By investigating a disordered MnAs-GaAs composite material, it is found that the magnitude of the linear magnetoresistance (LMR) is numerically equal to the carrier mobility over a wide range and is independent of carrier density. This behavior is complementary to the Hall effect that is independent of the mobility and dependent on the carrier density. Moreover, the LMR appears to be insensitive to the details of the disorder and points to a universal explanation of classical LMR that can be applied to other material systems.Comment: Accepted by Phys. Rev. B (2010
    corecore