27,081 research outputs found

    Broadcasting of three qubit entanglement via local copying and entanglement swapping

    Get PDF
    In this work,We investigate the problem of secretly broadcasting of three-qubit entangled state between two distant partners. The interesting feature of this problem is that starting from two particle entangled state shared between two distant partners we find that the action of local cloner on the qubits and the measurement on the machine state vector generates three-qubit entanglement between them. The broadcasting of entanglement is made secret by sending the measurement result secretly using cryptographic scheme based on orthogonal states. Further we show that this idea can be extended to generate three particle entangled state between three distant partners.Comment: 18 pages, 4 figures, Accepted in Physical Review

    Negative entropy and information in quantum mechanics

    Get PDF
    A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles suggests a consistent interpretation of quantum informational processes.Comment: 4 pages RevTeX, 2 figures. Expanded discussion of quantum teleportation and superdense coding, and minor corrections. To appear in Phys. Rev. Let

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review

    Optimal Entanglement Enhancement for Mixed States

    Get PDF
    We consider the actions of protocols involving local quantum operations and classical communication (LQCC) on a single system consisting of two separated qubits. We give a complete description of the orbits of the space of states under LQCC and characterise the representatives with maximal entanglement of formation. We thus obtain a LQCC entanglement concentration protocol for a single given state (pure or mixed) of two qubits which is optimal in the sense that the protocol produces, with non-zero probability, a state of maximal possible entanglement of formation. This defines a new entanglement measure, the maximum extractable entanglement.Comment: Final version: to appear in Phys. Rev. Let

    Probabilistic teleportation and entanglement matching

    Get PDF
    Teleportation may be taken as sending and extracting quantum information through quantum channels. In this report, it is shown that to get the maximal probability of exact teleportation through partially entangled quantum channels, the sender (Alice) need only to operate a measurement which satisfy an ``entanglement matching'' to this channel. An optimal strategy is also provided for the receiver (Bob) to extract the quantum information by adopting general evolutions.Comment: 3.5 pages, No figure

    Strong quantitative benchmarking of quantum optical devices

    Full text link
    Quantum communication devices, such as quantum repeaters, quantum memories, or quantum channels, are unavoidably exposed to imperfections. However, the presence of imperfections can be tolerated, as long as we can verify such devices retain their quantum advantages. Benchmarks based on witnessing entanglement have proven useful for verifying the true quantum nature of these devices. The next challenge is to characterize how strongly a device is within the quantum domain. We present a method, based on entanglement measures and rigorous state truncation, which allows us to characterize the degree of quantumness of optical devices. This method serves as a quantitative extension to a large class of previously-known quantum benchmarks, requiring no additional information beyond what is already used for the non-quantitative benchmarks.Comment: 11 pages, 7 figures. Comments are welcome. ver 2: Improved figures, no changes to main tex

    Entanglement Swapping Chains for General Pure States

    Get PDF
    We consider entanglement swapping schemes with general (rather than maximally) entangled bipartite states of arbitary dimension shared pairwise between three or more parties in a chain. The intermediate parties perform generalised Bell measurements with the result that the two end parties end up sharing a entangled state which can be converted into maximally entangled states. We obtain an expression for the average amount of maximal entanglement concentrated in such a scheme and show that in a certain reasonably broad class of cases this scheme is provably optimal and that, in these cases, the amount of entanglement concentrated between the two ends is equal to that which could be concentrated from the weakest link in the chain.Comment: 18 pages, 5 figure

    Optimal purification of single qubits

    Get PDF
    We introduce a new decomposition of the multiqubit states of the form ρN\rho^{\otimes N} and employ it to construct the optimal single qubit purification procedure. The same decomposition allows us to study optimal quantum cloning and state estimation of mixed states.Comment: 4 pages, 1 figur

    Complete physical simulation of the entangling-probe attack on the BB84 protocol

    Get PDF
    We have used deterministic single-photon two qubit (SPTQ) quantum logic to implement the most powerful individual-photon attack against the Bennett-Brassard 1984 (BB84) quantum key distribution protocol. Our measurement results, including physical source and gate errors, are in good agreement with theoretical predictions for the Renyi information obtained by Eve as a function of the errors she imparts to Alice and Bob's sifted key bits. The current experiment is a physical simulation of a true attack, because Eve has access to Bob's physical receiver module. This experiment illustrates the utility of an efficient deterministic quantum logic for performing realistic physical simulations of quantum information processing functions.Comment: 4 pages, 5 figure

    On the origin of noisy states whose teleportation fidelity can be enhanced through dissipation

    Full text link
    Recently Badziag \emph{et al.} \cite{badziag} obtained a class of noisy states whose teleportation fidelity can be enhanced by subjecting one of the qubits to dissipative interaction with the environment via amplitude damping channel (ADC). We show that such noisy states result while sharing the states (| \Phi ^{\pm}> =\frac{1}{\sqrt{2}}(| 00> \pm | 11>)) across ADC. We also show that under similar dissipative interactions different Bell states give rise to noisy entangled states that are qualitatively very different from each other in the sense, only the noisy entangled states constructed from the Bell states (| \Phi ^{\pm}>) can \emph{}be made better sometimes by subjecting the unaffected qubit to a dissipative interaction with the environment. Importantly if the noisy state is non teleporting then it can always be made teleporting with this prescription. We derive the most general restrictions on improvement of such noisy states assuming that the damping parameters being different for both the qubits. However this curious prescription does not work for the noisy entangled states generated from (| \Psi ^{\pm}> =\frac{1}{\sqrt{2}}(| 01> \pm | 10>)). This shows that an apriori knowledge of the noisy channel might be helpful to decide which Bell state needs to be shared between Alice and Bob. \emph{}Comment: Latex, 18 pages: Revised version with a new result. Submitted to PR
    corecore