1,145 research outputs found
The fully entangled fraction as an inclusive measure of entanglement applications
Characterizing entanglement in all but the simplest case of a two qubit pure
state is a hard problem, even understanding the relevant experimental
quantities that are related to entanglement is difficult. It may not be
necessary, however, to quantify the entanglement of a state in order to
quantify the quantum information processing significance of a state. It is
known that the fully entangled fraction has a direct relationship to the
fidelity of teleportation maximized under the actions of local unitary
operations. In the case of two qubits we point out that the fully entangled
fraction can also be related to the fidelities, maximized under the actions of
local unitary operations, of other important quantum information tasks such as
dense coding, entanglement swapping and quantum cryptography in such a way as
to provide an inclusive measure of these entanglement applications. For two
qubit systems the fully entangled fraction has a simple known closed-form
expression and we establish lower and upper bounds of this quantity with the
concurrence. This approach is readily extendable to more complicated systems.Comment: 14 pages, 2 figures, accepted in Physics Letters
Parametrization of projector-based witnesses for bipartite systems
Entanglement witnesses are nonpositive Hermitian operators which can detect
the presence of entanglement. In this paper, we provide a general
parametrization for orthonormal basis of and use it to
construct projector-based witness operators for entanglement detection in the
vicinity of pure bipartite states. Our method to parameterize entanglement
witnesses is operationally simple and could be used for doing symbolic and
numerical calculations. As an example we use the method for detecting
entanglement between an atom and the single mode of quantized field, described
by the Jaynes-Cummings model. We also compare the detection of witnesses with
the negativity of the state, and show that in the vicinity of pure stats such
constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure
Quantum entanglement and information processing via excitons in optically-driven quantum dots
We show how optically-driven coupled quantum dots can be used to prepare
maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation
of the strength and duration of the selective light-pulses needed for producing
these highly entangled states provides us with crucial elements for the
processing of solid-state based quantum information. Theoretical predictions
suggest that several hundred single quantum bit rotations and Controlled-Not
gates could be performed before decoherence of the excitonic states takes
place.Comment: 3 separate PostScript Figures + 7 pages. Typos corrected. Minor
changes added. This updated version is to appear in PR
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia
Deer are among the world's most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as 'game' and others as 'pests'. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems
Quantum Entanglement of Excitons in Coupled Quantum Dots
Optically-controlled exciton dynamics in coupled quantum dots is studied. We
show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger
(GHZ) states can be robustly generated by manipulating the system parameters to
be at the avoided crossings in the eigenenergy spectrum. The analysis of
population transfer is systematically carried out using a dressed-state
picture. In addition to the quantum dot configuration that have been discussed
by Quiroga and Johnson [Phys. Rev. Lett. \QTR{bf}{83}, 2270 (1999)], we show
that the GHZ states also may be produced in a ray of three quantum dots with a
shorter generation time.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state
We propose a scheme to implement a single-mode quantum filter, which
selectively eliminates the one-photon state in a quantum state
. The vacuum state and the two photon state are
transmitted without any change. This scheme requires single-photon sources,
linear optical elements and photon detectors. Furthermore we demonstrate, how
this filter can be used to realize a two-qubit projective measurement and to
generate multi-photon polarization entangled states.Comment: revision submitted to PR
Quantum Cryptography Using Single Particle Entanglement
A quantum cryptography scheme based on entanglement between a single particle
state and a vacuum state is proposed. The scheme utilizes linear optics devices
to detect the superposition of the vacuum and single particle states. Existence
of an eavesdropper can be detected by using a variant of Bell's inequality.Comment: 4 pages, 3figures, revte
Fork pausing allows centromere DNA loop formation and kinetochore assembly
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex
Engineering Entanglement between two cavity modes
We present scheme for generation of entanglement between different modes of
radiation field inside high-Q superconducting cavities. Our scheme is based on
the interaction of a three-level atom with the cavity field for pre-calculated
interaction times with each mode. This work enables us to generate complete set
of Bell basis states and GHZ state
- …