22,997 research outputs found

    Deduced Primary Structure of the β Subunit of Brain Type II Ca2+/calmodulin-dependent Protein Kinase Determined by Molecular Cloning

    Get PDF
    cDNA clones coding for the β subunit of rat brain type II Ca2+/calmodulin-dependent protein kinase were isolated and sequenced. The clones, including one containing the entire coding region, hybridize at high stringency to a single band of poly(A)+ RNA of length 4.8 kilobases. The subunit coded for by the clones was identified by in vitro transcription of the cDNA followed by translation of the resulting RNA. The DNA sequence of the clones contains a single long open reading frame (1626 nucleotides) coding for a protein of 542 amino acids with a molecular weight of 60,333, the amino-terminal half of which is homologous to several other protein kinases. Potential ATP- and calmodulin-binding domains were identified. Two independent clones contain an identical 45-nucleotide deletion, relative to the clones described above, resulting in a shorter open reading frame coding for a protein of molecular weight 58,000. This suggests that the minor, 58-kDa β' subunit of the type II Ca2+/calmodulin-dependent kinase may be synthesized on a separate message

    Lattice-corrected strain-induced vector potentials in graphene

    Full text link
    The electronic implications of strain in graphene can be captured at low energies by means of pseudovector potentials which can give rise to pseudomagnetic fields. These strain-induced vector potentials arise from the local perturbation to the electronic hopping amplitudes in a tight-binding framework. Here we complete the standard description of the strain-induced vector potential, which accounts only for the hopping perturbation, with the explicit inclusion of the lattice deformations or, equivalently, the deformation of the Brillouin zone. These corrections are linear in strain and are different at each of the strained, inequivalent Dirac points, and hence are equally necessary to identify the precise magnitude of the vector potential. This effect can be relevant in scenarios of inhomogeneous strain profiles, where electronic motion depends on the amount of overlap among the local Fermi surfaces. In particular, it affects the pseudomagnetic field distribution induced by inhomogeneous strain configurations, and can lead to new opportunities in tailoring the optimal strain fields for certain desired functionalities.Comment: Errata for version

    The Parity Bit in Quantum Cryptography

    Get PDF
    An nn-bit string is encoded as a sequence of non-orthogonal quantum states. The parity bit of that nn-bit string is described by one of two density matrices, ρ0(n)\rho_0^{(n)} and ρ1(n)\rho_1^{(n)}, both in a Hilbert space of dimension 2n2^n. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum crytography in the presence of noise.Comment: 19 pages, RevTe

    Security against eavesdropping in quantum cryptography

    Get PDF
    In this article we deal with the security of the BB84 quantum cryptography protocol over noisy channels using generalized privacy amplification. For this we estimate the fraction of bits needed to be discarded during the privacy amplification step. This estimate is given for two scenarios, both of which assume the eavesdropper to access each of the signals independently and take error correction into account. One scenario does not allow a delay of the eavesdropper's measurement of a measurement probe until he receives additional classical information. In this scenario we achieve a sharp bound. The other scenario allows a measurement delay, so that the general attack of an eavesdropper on individual signals is covered. This bound is not sharp but allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in my Phys. Rev. A pape

    Two qubit copying machine for economical quantum eavesdropping

    Get PDF
    We study the mapping which occurs when a single qubit in an arbitrary state interacts with another qubit in a given, fixed state resulting in some unitary transformation on the two qubit system which, in effect, makes two copies of the first qubit. The general problem of the quality of the resulting copies is discussed using a special representation, a generalization of the usual Schmidt decomposition, of an arbitrary two-dimensional subspace of a tensor product of two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can reproduce the results of any two qubit copying machine of this type. A simple stochastic generalization (using a ``classical'' random signal) of the copying machine is also considered. These copying machines provide simple embodiments of previously proposed optimal eavesdropping schemes for the BB84 and B92 quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure

    Fluctuations of Quantum Entanglement

    Full text link
    It is emphasized that quantum entanglement determined in terms of the von Neumann entropy operator is a stochastic quantity and, therefore, can fluctuate. The rms fluctuations of the entanglement entropy of two-qubit systems in both pure and mixed states have been obtained. It has been found that entanglement fluctuations in the maximally entangled states are absent. Regions where the entanglement fluctuations are larger than the entanglement itself (strong fluctuation regions) have been revealed. It has been found that the magnitude of the relative entanglement fluctuations is divergent at the points of the transition of systems from an entangled state to a separable state. It has been shown that entanglement fluctuations vanish in the separable states.Comment: 5 pages, 4 figure

    Quantum cryptography with squeezed states

    Get PDF
    A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.Comment: 15 pages, no figure
    corecore