1,259 research outputs found
Zanzibar, Portugal, and Mozambique: relations from the late eighteenth century to 1890
African Studies Center Working Paper No. 12
Topological Flat Bands from Dipolar Spin Systems
We propose and analyze a physical system that naturally admits
two-dimensional topological nearly flat bands. Our approach utilizes an array
of three-level dipoles (effective S = 1 spins) driven by inhomogeneous
electromagnetic fields. The dipolar interactions produce arbitrary uniform
background gauge fields for an effective collection of conserved hardcore
bosons, namely, the dressed spin-flips. These gauge fields result in
topological band structures, whose bandgap can be larger than the corresponding
bandwidth. Exact diagonalization of the full interacting Hamiltonian at
half-filling reveals the existence of superfluid, crystalline, and supersolid
phases. An experimental realization using either ultra-cold polar molecules or
spins in the solid state is considered.Comment: 8 pages, 5 figures. V2: Added discussion of optical dressing - final
version as published in Phys. Rev. Let
Quantum Logic between Remote Quantum Registers
We analyze two approaches to quantum state transfer in solid-state spin
systems. First, we consider unpolarized spin-chains and extend previous
analysis to various experimentally relevant imperfections, including quenched
disorder, dynamical decoherence, and uncompensated long range coupling. In
finite-length chains, the interplay between disorder-induced localization and
decoherence yields a natural optimal channel fidelity, which we calculate.
Long-range dipolar couplings induce a finite intrinsic lifetime for the
mediating eigenmode; extensive numerical simulations of dipolar chains of
lengths up to L=12 show remarkably high fidelity despite these decay processes.
We further consider the extension of the protocol to bosonic systems of coupled
oscillators. Second, we introduce a quantum mirror based architecture for
universal quantum computing which exploits all of the spins in the system as
potential qubits. While this dramatically increases the number of qubits
available, the composite operations required to manipulate "dark" spin qubits
significantly raise the error threshold for robust operation. Finally, as an
example, we demonstrate that eigenmode-mediated state transfer can enable
robust long-range logic between spatially separated Nitrogen-Vacancy registers
in diamond; numerical simulations confirm that high fidelity gates are
achievable even in the presence of moderate disorder.Comment: 15 pages, 10 figure
Effects of Noisy Oracle on Search Algorithm Complexity
Grover's algorithm provides a quadratic speed-up over classical algorithms
for unstructured database or library searches. This paper examines the
robustness of Grover's search algorithm to a random phase error in the oracle
and analyzes the complexity of the search process as a function of the scaling
of the oracle error with database or library size. Both the discrete- and
continuous-time implementations of the search algorithm are investigated. It is
shown that unless the oracle phase error scales as O(N^(-1/4)), neither the
discrete- nor the continuous-time implementation of Grover's algorithm is
scalably robust to this error in the absence of error correction.Comment: 16 pages, 4 figures, submitted to Phys. Rev.
Elementary gates for quantum computation
We show that a set of gates that consists of all one-bit quantum gates (U(2))
and the two-bit exclusive-or gate (that maps Boolean values to ) is universal in the sense that all unitary operations on
arbitrarily many bits (U()) can be expressed as compositions of these
gates. We investigate the number of the above gates required to implement other
gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2)
transformation to one input bit if and only if the logical AND of all remaining
input bits is satisfied. These gates play a central role in many proposed
constructions of quantum computational networks. We derive upper and lower
bounds on the exact number of elementary gates required to build up a variety
of two-and three-bit quantum gates, the asymptotic number required for -bit
Deutsch-Toffoli gates, and make some observations about the number required for
arbitrary -bit unitary operations.Comment: 31 pages, plain latex, no separate figures, submitted to Phys. Rev.
A. Related information on http://vesta.physics.ucla.edu:7777
The experience of enchantment in human-computer interaction
Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p
Cosmic Necklaces and Ultrahigh Energy Cosmic Rays
Cosmic necklaces are hybrid topological defects consisting of monopoles and
strings, with two strings attached to each monopole. We argue that the
cosmological evolution of necklaces may significantly differ from that of
cosmic strings. The typical velocity of necklaces can be much smaller than the
speed of light, and the characteristic scale of the network much smaller than
the horizon. We estimate the flux of high-energy protons produced by monopole
annihilation in the decaying closed loops. For some reasonable values of the
parameters it is comparable to the observed flux of ultrahigh-energy cosmic
rays.Comment: 10 pages, Revtex, 1 figur
Trial protocol OPPTIMUM : does progesterone prophylaxis for the prevention of preterm labour improve outcome?
Background
Preterm birth is a global problem, with a prevalence of 8 to 12% depending on location. Several large trials and systematic reviews have shown progestogens to be effective in preventing or delaying preterm birth in selected high risk women with a singleton pregnancy (including those with a short cervix or previous preterm birth). Although an improvement in short term neonatal outcomes has been shown in some trials these have not consistently been confirmed in meta-analyses. Additionally data on longer term outcomes is limited to a single trial where no difference in outcomes was demonstrated at four years of age of the child, despite those in the “progesterone” group having a lower incidence of preterm birth.
Methods/Design
The OPPTIMUM study is a double blind randomized placebo controlled trial to determine whether progesterone prophylaxis to prevent preterm birth has long term neonatal or infant benefit. Specifically it will study whether, in women with singleton pregnancy and at high risk of preterm labour, prophylactic vaginal natural progesterone, 200 mg daily from 22 – 34 weeks gestation, compared to placebo, improves obstetric outcome by lengthening pregnancy thus reducing the incidence of preterm delivery (before 34 weeks), improves neonatal outcome by reducing a composite of death and major morbidity, and leads to improved childhood cognitive and neurosensory outcomes at two years of age. Recruitment began in 2009 and is scheduled to close in Spring 2013. As of May 2012, over 800 women had been randomized in 60 sites.
Discussion
OPPTIMUM will provide further evidence on the effectiveness of vaginal progesterone for prevention of preterm birth and improvement of neonatal outcomes in selected groups of women with singleton pregnancy at high risk of preterm birth. Additionally it will determine whether any reduction in the incidence of preterm birth is accompanied by improved childhood outcome
Vision and Foraging in Cormorants: More like Herons than Hawks?
Background
Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique.
Methodology/Principal Findings
We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m).
Conclusions/Significance
We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons
- …