2,264 research outputs found

    Spatio-temporal Learning with Arrays of Analog Nanosynapses

    Full text link
    Emerging nanodevices such as resistive memories are being considered for hardware realizations of a variety of artificial neural networks (ANNs), including highly promising online variants of the learning approaches known as reservoir computing (RC) and the extreme learning machine (ELM). We propose an RC/ELM inspired learning system built with nanosynapses that performs both on-chip projection and regression operations. To address time-dynamic tasks, the hidden neurons of our system perform spatio-temporal integration and can be further enhanced with variable sampling or multiple activation windows. We detail the system and show its use in conjunction with a highly analog nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46 battery of spoken digits. The system achieves nearly perfect (99%) accuracy at sufficient hidden layer size, which compares favorably with software results. In addition, the model is extended to a larger dataset, the MNIST database of handwritten digits. By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved. In addition to an intrinsically low-power programming style, the proposed architecture learns very quickly and can easily be converted into a spiking system with negligible loss in performance- all features that confer significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale architectures (NANOARCH

    Local u'g'r'i'z' Standard Stars in the Chandra Deep Field-South

    Full text link
    Because several observing programs are underway in various spectral regimes to explore the Chandra Deep Field South (CDF-S), the value of local photometric standards is obvious. As part of an NOAO Surveys Program to establish u'g'r'i'z' standard stars in the southern hemisphere, we have observed the central region of the CDF-S to create local standards for use by other investigators using these filters. As a courtesy, we present the CDF-S standards to the public now, although the main program will not finish until mid-2005.Comment: Accepted by AJ (scheduled for October 2003 issue). 26 pages, 5 tables, 5 figures. High resolution version of Figure 7 available at http://home.fnal.gov/~dtucker/Southern_ugriz/index.htm

    Optimal Universal and State-Dependent Quantum Cloning

    Get PDF
    We establish the best possible approximation to a perfect quantum cloning machine which produces two clones out of a single input. We analyze both universal and state-dependent cloners. The maximal fidelity of cloning is shown to be 5/6 for universal cloners. It can be achieved either by a special unitary evolution or by a novel teleportation scheme. We construct the optimal state-dependent cloners operating on any prescribed two non-orthogonal states, discuss their fidelities and the use of auxiliary physical resources in the process of cloning. The optimal universal cloners permit us to derive a new upper bound on the quantum capacity of the depolarizing quantum channel.Comment: 30 pages (RevTeX), 2 figures (epsf), further results and further authors added, to appear in Physical Review

    Quantum State Disturbance vs. Information Gain: Uncertainty Relations for Quantum Information

    Full text link
    When an observer wants to identify a quantum state, which is known to be one of a given set of non-orthogonal states, the act of observation causes a disturbance to that state. We investigate the tradeoff between the information gain and that disturbance. This issue has important applications in quantum cryptography. The optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable non-orthogonal pure states.Comment: 20 pages, standard LaTeX, four png figures (also available from the authors: [email protected] and [email protected]

    Nonorthogonal Quantum States Maximize Classical Information Capacity

    Get PDF
    I demonstrate that, rather unexpectedly, there exist noisy quantum channels for which the optimal classical information transmission rate is achieved only by signaling alphabets consisting of nonorthogonal quantum states.Comment: 5 pages, REVTeX, mild extension of results, much improved presentation, to appear in Physical Review Letter

    Regional differences in phosphorus budgets in intensive soybean agriculture

    Get PDF
    Author Posting. © American Institute of Biological Sciences, 2013. This article is posted here by permission of University of California Press for personal use, not for redistribution. The definitive version was published in BioScience 63 (2013): 49-54, doi:10.1525/bio.2013.63.1.10.Fertilizer-intensive agriculture has been integral to increasing food production over the past half century but has been accompanied by environmental costs. We use case studies of phosphorus fertilizer use in the world’s most productive soybean-growing regions, Iowa (United States), Mato Grosso (Brazil), and Buenos Aires (Argentina), to examine influences of management and soil type on agriculture’s most prevalent phosphorusrelated environmental consequences: eutrophication and consumption of Earth’s finite phosphorus reserves. With increasing phosphorus inputs, achieving high yields on tropical soils with high phosphorus-binding capacity is becoming more common. This system has low eutrophication risks but increases demands on phosphorus supplies. In contrast, production in traditional breadbaskets, on soils with lower phosphorus-binding capacities, is being sustained with decreasing phosphorus inputs. However, in these regions, historical overuse of phosphorus may mean continued eutrophication risk even as pressures on phosphorus reserves diminish. We focus here on soybean production but illustrate how achieving sustainable agriculture involves an intricate optimization of local, regional, and global considerations.SP is supported by the Andrew Mellon Foundation, and CN and SHR’s work in Mato Grosso was funded by National Science Foundation grant no. NSF-DEB-0640661 and through collaboration with the Instituto de Pesquisa Ambiental da Amazonia

    Quantum probabilities as Bayesian probabilities

    Full text link
    In the Bayesian approach to probability theory, probability quantifies a degree of belief for a single trial, without any a priori connection to limiting frequencies. In this paper we show that, despite being prescribed by a fundamental law, probabilities for individual quantum systems can be understood within the Bayesian approach. We argue that the distinction between classical and quantum probabilities lies not in their definition, but in the nature of the information they encode. In the classical world, maximal information about a physical system is complete in the sense of providing definite answers for all possible questions that can be asked of the system. In the quantum world, maximal information is not complete and cannot be completed. Using this distinction, we show that any Bayesian probability assignment in quantum mechanics must have the form of the quantum probability rule, that maximal information about a quantum system leads to a unique quantum-state assignment, and that quantum theory provides a stronger connection between probability and measured frequency than can be justified classically. Finally we give a Bayesian formulation of quantum-state tomography.Comment: 6 pages, Latex, final versio

    Quantum Nonlocality without Entanglement

    Get PDF
    We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles which also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A. Version 2: 30 pages, many small revisions and extensions, author added. Version 3: Proof in Appendix D corrected, many small changes; final version for Phys. Rev. A Version 4: Report of Popescu conjecture modifie
    corecore