1,129 research outputs found
Lattice-corrected strain-induced vector potentials in graphene
The electronic implications of strain in graphene can be captured at low
energies by means of pseudovector potentials which can give rise to
pseudomagnetic fields. These strain-induced vector potentials arise from the
local perturbation to the electronic hopping amplitudes in a tight-binding
framework. Here we complete the standard description of the strain-induced
vector potential, which accounts only for the hopping perturbation, with the
explicit inclusion of the lattice deformations or, equivalently, the
deformation of the Brillouin zone. These corrections are linear in strain and
are different at each of the strained, inequivalent Dirac points, and hence are
equally necessary to identify the precise magnitude of the vector potential.
This effect can be relevant in scenarios of inhomogeneous strain profiles,
where electronic motion depends on the amount of overlap among the local Fermi
surfaces. In particular, it affects the pseudomagnetic field distribution
induced by inhomogeneous strain configurations, and can lead to new
opportunities in tailoring the optimal strain fields for certain desired
functionalities.Comment: Errata for version
Quantum privacy amplification and the security of quantum cryptography over noisy channels
Existing quantum cryptographic schemes are not, as they stand, operable in
the presence of noise on the quantum communication channel. Although they
become operable if they are supplemented by classical privacy-amplification
techniques, the resulting schemes are difficult to analyse and have not been
proved secure. We introduce the concept of quantum privacy amplification and a
cryptographic scheme incorporating it which is provably secure over a noisy
channel. The scheme uses an `entanglement purification' procedure which,
because it requires only a few quantum Controlled-Not and single-qubit
operations, could be implemented using technology that is currently being
developed. The scheme allows an arbitrarily small bound to be placed on the
information that any eavesdropper may extract from the encrypted message.Comment: 13 pages, Latex including 2 postcript files included using psfig
macro
Monolayer MoS2 strained to 1.3% with a microelectromechanical system
We report on a modified transfer technique for atomically thin materials integrated onto microelectromechanical
systems (MEMS) for studying strain physics and creating strain-based devices. Our method tolerates the non-planar
structures and fragility of MEMS, while still providing precise positioning and crack free transfer of flakes. Further,
our method used the transfer polymer to anchor the 2D crystal to the MEMS, which reduces the fabrication time,
increases the yield, and allowed us to exploit the strong mechanical coupling between 2D crystal and polymer to
strain the atomically thin system. We successfully strained single atomic layers of molybdenum disulfide (MoS2) with
MEMS devices for the first time and achieved greater than 1.3% strain, marking a major milestone for incorporating
2D materials with MEMS We used the established strain response of MoS2 Raman and Photoluminescence spectra to
deduce the strain in our crystals and provide a consistency check. We found good comparison between our experiment
and literature.Published versio
The Hymenoptera Genome Database
The Hymenoptera Genome Database (HGD) is an informatics resource supporting genomics of hymenopteran insect species. This relational database implements open-source software and components providing access to curated data contributed by an extensive, active research community. HGD includes the genome sequences and annotation data of honey bee _Apis mellifera_ and its pathogens ("http://BeeBase.org":BeeBase.org) the parasitoid wasp _Nasonia vitripennis_ ("http://NasoniaBase.org":NasoniaBase.org) and a portal to the genomes of six species of ants. Together, these species cover approximately 200 MY in the phylogeny of Hymenoptera, allowing to leverage genetic, genome sequence, and gene expression data, as well as the biological knowledge of related model organisms. The availability of resources across an order greatly facilitates comparative genomics and enhances our understanding of the biology of agriculturally important Hymenoptera species through genomics. HGD has supported research contributions from an extensive community from almost 80 institutions in 14 countries. Community annotation efforts are made possible thanks to a remote connection to a Chado database by Apollo Genome Annotation client software. Curated data at HGD includes predicted and annotated gene sets supported with evidence tracks such as ESTs/cDNAs, small RNA sequences and GC composition domains. Data at HGD can be queried using genome browsers and / or BLAST/PSI-BLAST servers, and it may also be downloaded to perform local searches. We encourage the public to access and contribute data to HGD at "http://HymenopteraGenome.org":HymenopteraGenome.org.

This poster contains material included in an article accepted for publication in Nucl. Acids Res.©: 2011. The Database Issue. Published by Oxford University Press
Intrinsic Optical Transition Energies in Carbon Nanotubes
Intrinsic optical transition energies for isolated and individual single wall
carbon nanotubes grown over trenches are measured using tunable resonant Raman
scattering. Previously measured E22_S optical transitions from nanotubes in
surfactants are blue shifted 70-90 meV with respect to our measurements of
nanotubes in air. This large shift in the exciton energy is attributed to a
larger change of the exciton binding energy than the band-gap renormalization
as the surrounding dielectric constant increases.Comment: Due to a mistake, a different paper was submitted as "revised v2".
This is a re-submission of the origional version in order to correct the
mistak
Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2
We demonstrate the continuous and reversible tuning of the optical band gap
of suspended monolayer MoS2 membranes by as much as 500 meV by applying very
large biaxial strains. By using chemical vapor deposition (CVD) to grow
crystals that are highly impermeable to gas, we are able to apply a pressure
difference across suspended membranes to induce biaxial strains. We observe the
effect of strain on the energy and intensity of the peaks in the
photoluminescence (PL) spectrum, and find a linear tuning rate of the optical
band gap of 99 meV/%. This method is then used to study the PL spectra of
bilayer and trilayer devices under strain, and to find the shift rates and
Gr\"uneisen parameters of two Raman modes in monolayer MoS2. Finally, we use
this result to show that we can apply biaxial strains as large as 5.6% across
micron sized areas, and report evidence for the strain tuning of higher level
optical transitions.Comment: Nano Lett., Article ASA
Construction and evaluation of group tests in reading for grades one, two, and three.
Thesis (Ed.M.)--Boston Universit
On the volume of the set of mixed entangled states
A natural measure in the space of density matrices describing N-dimensional
quantum systems is proposed. We study the probability P that a quantum state
chosen randomly with respect to the natural measure is not entangled (is
separable). We find analytical lower and upper bounds for this quantity.
Numerical calculations give P = 0.632 for N=4 and P=0.384 for N=6, and indicate
that P decreases exponentially with N. Analysis of a conditional measure of
separability under the condition of fixed purity shows a clear dualism between
purity and separability: entanglement is typical for pure states, while
separability is connected with quantum mixtures. In particular, states of
sufficiently low purity are necessarily separable.Comment: 10 pages in LaTex - RevTex + 4 figures in eps. submitted to Phys.
Rev.
- …