2,503 research outputs found
The Present status of our knowledge on the lesser sardines of Indian waters
The results of research carried out at Waltair, Mandapam.
Tuticorin and Vizhinjam and another centres on the lesser sardines
over the past up till 1978 are reviewed in detail. In the twentyyear
period from 1958 to 1978 there was an increasing trend of
production of these fishes along the different coasts of India,
the average annual landings nearly doubling from 36,000 t in
1958-67 to 70,000 t in 1968-78. The bulk of the catches came
from Tamil Nadu, including Pondicherry, (32.6%), Kerala
(32.2%) and Andhra Pradesh (26.5%)- Fishing was mostly by
the labour-intensive traditional methods in close-shore waters,
better catches coming from 30-55 m depths. Shore seines, boat
seines and gill nets were the principal gears employed in the
fishery though gill nets were the most effective
Quantum correlations from local amplitudes and the resolution of the Einstein-Podolsky-Rosen nonlocality puzzle
The Einstein-Podolsky-Rosen nonlocality puzzle has been recognized as one of
the most important unresolved issues in the foundational aspects of quantum
mechanics. We show that the problem is resolved if the quantum correlations are
calculated directly from local quantities which preserve the phase information
in the quantum system. We assume strict locality for the probability amplitudes
instead of local realism for the outcomes, and calculate an amplitude
correlation function.Then the experimentally observed correlation of outcomes
is calculated from the square of the amplitude correlation function. Locality
of amplitudes implies that the measurement on one particle does not collapse
the companion particle to a definite state. Apart from resolving the EPR
puzzle, this approach shows that the physical interpretation of apparently
`nonlocal' effects like quantum teleportation and entanglement swapping are
different from what is usually assumed. Bell type measurements do not change
distant states. Yet the correlations are correctly reproduced, when measured,
if complex probability amplitudes are treated as the basic local quantities. As
examples we discuss the quantum correlations of two-particle maximally
entangled states and the three-particle GHZ entangled state.Comment: Std. Latex, 11 pages, 1 table. Prepared for presentation at the
International Conference on Quantum Optics, ICQO'2000, Minsk, Belaru
Quantum complexities of ordered searching, sorting, and element distinctness
We consider the quantum complexities of the following three problems:
searching an ordered list, sorting an un-ordered list, and deciding whether the
numbers in a list are all distinct. Letting N be the number of elements in the
input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the
list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary
comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary
comparisons for element distinctness. The previously best known lower bounds
are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}),
respectively. Our proofs are based on a weighted all-pairs inner product
argument.
In addition to our lower bound results, we give a quantum algorithm for
ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm
uses a quantum routine for traversing through a binary search tree faster than
classically, and it is of a nature very different from a faster algorithm due
to Farhi, Goldstone, Gutmann, and Sipser.Comment: This new version contains new results. To appear at ICALP '01. Some
of the results have previously been presented at QIP '01. This paper subsumes
the papers quant-ph/0009091 and quant-ph/000903
Evolution of a global string network in a matter dominated universe
We evolve the network of global strings in the matter-dominated universe by
means of numerical simulations. The existence of the scaling solution is
confirmed as in the radiation-dominated universe but the scaling parameter
takes a slightly smaller value, , which is
defined as with the energy density of
global strings and the string tension per unit length. The change of
from the radiation to the matter-dominated universe is consistent with
that obtained by Albrecht and Turok by use of the one-scale model. We also
study the loop distribution function and find that it can be well fitted with
that predicted by the one-scale model, where the number density of
the loop with the length is given by with and . Thus, the evolution of the
global string network in the matter-dominated universe can be well described by
the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure
Scaling Property of the global string in the radiation dominated universe
We investigate the evolution of the global string network in the radiation
dominated universe by use of numerical simulations in 3+1 dimensions. We find
that the global string network settles down to the scaling regime where the
energy density of global strings, , is given by with the string tension per unit length and the scaling parameter,
, irrespective of the cosmic time. We also find that the
loop distribution function can be fitted with that predicted by the so-called
one scale model. Concretely, the number density, , of the loop with
the length, , is given by
where and is related with the Nambu-Goldstone(NG)
boson radiation power from global strings, , as with
. Therefore, the loop production function also scales and
the typical scale of produced loops is nearly the horizon distance. Thus, the
evolution of the global string network in the radiation dominated universe can
be well described by the one scale model in contrast with that of the local
string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.
Using of small-scale quantum computers in cryptography with many-qubit entangled states
We propose a new cryptographic protocol. It is suggested to encode
information in ordinary binary form into many-qubit entangled states with the
help of a quantum computer. A state of qubits (realized, e.g., with photons) is
transmitted through a quantum channel to the addressee, who applies a quantum
computer tuned to realize the inverse unitary transformation decoding of the
message. Different ways of eavesdropping are considered, and an estimate of the
time needed for determining the secret unitary transformation is given. It is
shown that using even small quantum computers can serve as a basis for very
efficient cryptographic protocols. For a suggested cryptographic protocol, the
time scale on which communication can be considered secure is exponential in
the number of qubits in the entangled states and in the number of gates used to
construct the quantum network
Graviton mass and total relative density of mass Omega_tot in Universe
It is noticed that the total relative density of mass in the Universe
Omega_tot should exceed 1, i.e. Omega_tot=1+f^2/6 according to the field
relativistic theory of gravity (RTG), which is free of the cosmological
singularity and which provides the Euclidean character for the 3-dimensional
space. Here f is the ratio of the graviton mass m_g to the contemporary value
of the ``Hubble mass'' m^0_H=\hbar H_0/c^2\simeq 3,8\cdot 10^{-66}h(g)
(h=0,71\pm0,07). Applying results of the experimental data processing presented
in [1] an upper limit for the graviton mass is established as m_g\leq 3,2\cdot
10^{-66}g at the 95% confidence level.Comment: 8 pages, latex fil
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors
In this paper we discuss how the standard optimal Wiener filter theory can be
applied, within a linear approximation, to the detection of an isotropic
stochastic gravitational-wave background with two or more detectors. We apply
then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar
detectors, near to operate in coincidence in Italy, obtaining an estimate for
the sensitivity to the background spectral density of $\simeq 10^{-49}\
Hz^{-1}\simeq 8\times10^{-5}\times\rho_c\rho_c\simeq1.9 \times 10^{-26}\
kg/m^3\simeq 6
\times10^{-5}\times\rho_c\simeq 2\times10^{-5}\times
\rho_c\simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at
http://axln01.lnl.infn.it/reports/stoch.htm
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
- …