277 research outputs found

    Nuclear Migration and Spermatid Elongation During Spermiogenesis in Drosophila Pseudoobscura

    Get PDF

    Online adaption of milling parameters for a stable and productive process

    Get PDF
    On the way to fully autonomous machine tools it is essential to independently select suitable process parameters and adapt them on-the-fly to the appropriate process conditions in a self-controlled manner. Such systems require complex physical process models and are usually limited to feed and spindle speed adaption during the milling process. This paper introduces a new approach enabling machines during the milling process to learn which parameters lead to a stable process with maximum productivity and to adjust them autonomously. It is shown that this approach enables the machine tool to independently find stable process parameters with maximum productivity

    Toward an Antiphony Framework for Dividing Tasks into Subtasks

    Get PDF
    Task analysis is a staple of ergonomics, neuroergonomics, human factors, and experimental psychology inquiry, and often benefits from granularity beyond the task level to the subtask level. The concept and challenge of identifying the subcomponents of tasks are neither new, nor solved. Practitioners routinely identify individually internally consistent and yet conflicting subdivisions. The challenge of producing reliable, valid subtask data across efforts recommends a unified framework for identifying consistent subtask divisions within tasks. A framework is here forwarded, based upon universal “antiphony” turn-taking behavior in human-human interaction, but adapted to address the highly scripted vocabulary of human-machine interaction. Practical application to a real-world vehicle interface is demonstrated, an example discussed in the light of research design, applied use, and future improvement

    Pulsed Quantum Frequency Combs from an Actively Mode-locked Intra-cavity Generation Scheme

    Get PDF
    We introduce an intra-cavity actively mode-locked excitation scheme for nonlinear microring resonators that removes the need for external laser excitation in the generation of pulsed two-photon frequency combs. We found a heralded anti-bunching dip of 0.245 and maximum coincidence-to-accidental ratio of 110 for the generated photon pairs

    On-chip Quantum State Generation by Means of Integrated Frequency Combs

    Get PDF
    Summary form only given. This paper investigates different approaches to generate optical quantum states by means of integrated optical frequency combs. These include the generation of multiplexed heralded single-photons, the first realization of cross-polarized photon-pairs on a photonic chip, the first generation of multiple two-photon entangled states, and the first realizations of multi-photon entangled quantum states on a photonic chip

    Generation of Complex Quantum States Via Integrated Frequency Combs

    Get PDF
    The generation of optical quantum states on an integrated platform will enable low cost and accessible advances for quantum technologies such as secure communications and quantum computation. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index glass platform) can enable, among others, the generation of heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, constituting an important cornerstone for future practical implementations of photonic quantum information processing

    A Passively Mode-locked Nanosecond Laser with an Ultra-narrow Spectral Width

    Get PDF
    Many different mode-locking techniques have been realized in the past [1, 2], but mainly focused on increasing the spectral bandwidth to achieve ultra-short coherent light pulses with well below picosecond duration. In contrast, no mode-locked laser scheme has managed to generate Fourier-limited nanosecond long pulses, which feature narrow spectral bandwidths (~MHz regime) instrumental to applications in spectroscopy, efficient excitation of molecules, sensing, and quantum optics. The related limitations are mainly caused by the adverse operation timescales of saturable absorbers, as well as by the low strength of the nonlinear effects typically reachable through nanosecond pulses with manageable energies

    Multichannel phase-sensitive amplification in a low-loss CMOS-compatible spiral waveguide

    Get PDF
    We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device
    • …
    corecore