11 research outputs found
Advanced Architectures for Astrophysical Supercomputing
Astronomers have come to rely on the increasing performance of computers to
reduce, analyze, simulate and visualize their data. In this environment, faster
computation can mean more science outcomes or the opening up of new parameter
spaces for investigation. If we are to avoid major issues when implementing
codes on advanced architectures, it is important that we have a solid
understanding of our algorithms. A recent addition to the high-performance
computing scene that highlights this point is the graphics processing unit
(GPU). The hardware originally designed for speeding-up graphics rendering in
video games is now achieving speed-ups of in general-purpose
computation -- performance that cannot be ignored. We are using a generalized
approach, based on the analysis of astronomy algorithms, to identify the
optimal problem-types and techniques for taking advantage of both current GPU
hardware and future developments in computing architectures.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8
2009, Sapporo, Japan (ASP Conf. Series
Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters
General purpose computing on graphics processing units (GPGPU) is
dramatically changing the landscape of high performance computing in astronomy.
In this paper, we identify and investigate several key decision areas, with a
goal of simplyfing the early adoption of GPGPU in astronomy. We consider the
merits of OpenCL as an open standard in order to reduce risks associated with
coding in a native, vendor-specific programming environment, and present a GPU
programming philosophy based on using brute force solutions. We assert that
effective use of new GPU-based supercomputing facilities will require a change
in approach from astronomers. This will likely include improved programming
training, an increased need for software development best-practice through the
use of profiling and related optimisation tools, and a greater reliance on
third-party code libraries. As with any new technology, those willing to take
the risks, and make the investment of time and effort to become early adopters
of GPGPU in astronomy, stand to reap great benefits.Comment: 13 pages, 5 figures, accepted for publication in PAS
Spotting Radio Transients with the help of GPUs
Exploration of the time-domain radio sky has huge potential for advancing our
knowledge of the dynamic universe. Past surveys have discovered large numbers
of pulsars, rotating radio transients and other transient radio phenomena;
however, they have typically relied upon off-line processing to cope with the
high data and processing rate. This paradigm rules out the possibility of
obtaining high-resolution base-band dumps of significant events or of
performing immediate follow-up observations, limiting analysis power to what
can be gleaned from detection data alone. To overcome this limitation,
real-time processing and detection of transient radio events is required. By
exploiting the significant computing power of modern graphics processing units
(GPUs), we are developing a transient-detection pipeline that runs in real-time
on data from the Parkes radio telescope. In this paper we discuss the
algorithms used in our pipeline, the details of their implementation on the GPU
and the challenges posed by the presence of radio frequency interference.Comment: 4 Pages. To appear in the proceedings of ADASS XXI, ed. P.Ballester
and D.Egret, ASP Conf. Serie
Teraflop per second gravitational lensing ray-shooting using graphics processing units
Gravitational lensing calculation using a direct inverse ray-shooting
approach is a computationally expensive way to determine magnification maps,
caustic patterns, and light-curves (e.g. as a function of source profile and
size). However, as an easily parallelisable calculation, gravitational
ray-shooting can be accelerated using programmable graphics processing units
(GPUs). We present our implementation of inverse ray-shooting for the NVIDIA
G80 generation of graphics processors using the NVIDIA Compute Unified Device
Architecture (CUDA) software development kit. We also extend our code to
multiple-GPU systems, including a 4-GPU NVIDIA S1070 Tesla unit. We achieve
sustained processing performance of 182 Gflop/s on a single GPU, and 1.28
Tflop/s using the Tesla unit. We demonstrate that billion-lens microlensing
simulations can be run on a single computer with a Tesla unit in timescales of
order a day without the use of a hierarchical tree code.Comment: 21 pages, 4 figures, submitted to New Astronom
The Radio Sky at Meter Wavelengths: m-Mode Analysis Imaging with the Owens Valley Long Wavelength Array
A host of new low-frequency radio telescopes seek to measure the 21-cm
transition of neutral hydrogen from the early universe. These telescopes have
the potential to directly probe star and galaxy formation at redshifts , but are limited by the dynamic range they can achieve
against foreground sources of low-frequency radio emission. Consequently, there
is a growing demand for modern, high-fidelity maps of the sky at frequencies
below 200 MHz for use in foreground modeling and removal. We describe a new
widefield imaging technique for drift-scanning interferometers,
Tikhonov-regularized -mode analysis imaging. This technique constructs
images of the entire sky in a single synthesis imaging step with exact
treatment of widefield effects. We describe how the CLEAN algorithm can be
adapted to deconvolve maps generated by -mode analysis imaging. We
demonstrate Tikhonov-regularized -mode analysis imaging using the Owens
Valley Long Wavelength Array (OVRO-LWA) by generating 8 new maps of the sky
north of with 15 arcmin angular resolution, at frequencies
evenly spaced between 36.528 MHz and 73.152 MHz, and 800 mJy/beam thermal
noise. These maps are a 10-fold improvement in angular resolution over existing
full-sky maps at comparable frequencies, which have angular resolutions . Each map is constructed exclusively from interferometric observations
and does not represent the globally averaged sky brightness. Future
improvements will incorporate total power radiometry, improved thermal noise,
and improved angular resolution -- due to the planned expansion of the OVRO-LWA
to 2.6 km baselines. These maps serve as a first step on the path to the use of
more sophisticated foreground filters in 21-cm cosmology incorporating the
measured angular and frequency structure of all foreground contaminants.Comment: 27 pages, 18 figure
The Radio Sky at Meter Wavelengths: m-mode Analysis Imaging with the OVRO-LWA
A host of new low-frequency radio telescopes seek to measure the 21 cm transition of neutral hydrogen from the early universe. These telescopes have the potential to directly probe star and galaxy formation at redshifts 20 ≳ z ≳ 7 but are limited by the dynamic range they can achieve against foreground sources of low-frequency radio emission. Consequently, there is a growing demand for modern, high-fidelity maps of the sky at frequencies below 200 MHz for use in foreground modeling and removal. We describe a new wide-field imaging technique for drift-scanning interferometers: Tikhonov-regularized m-mode analysis imaging. This technique constructs images of the entire sky in a single synthesis imaging step with exact treatment of wide-field effects. We describe how the CLEAN algorithm can be adapted to deconvolve maps generated by m-mode analysis imaging. We demonstrate Tikhonov-regularized m-mode analysis imaging using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) by generating eight new maps of the sky north of δ = −30° with 15' angular resolution at frequencies evenly spaced between 36.528 and 73.152 MHz and ~800 mJy beam^(−1) thermal noise. These maps are a 10-fold improvement in angular resolution over existing full-sky maps at comparable frequencies, which have angular resolutions ≥2°. Each map is constructed exclusively from interferometric observations and does not represent the globally averaged sky brightness. Future improvements will incorporate total power radiometry, improved thermal noise, and improved angular resolution due to the planned expansion of the OVRO-LWA to 2.6 km baselines. These maps serve as a first step on the path to the use of more sophisticated foreground filters in 21 cm cosmology incorporating the measured angular and frequency structure of all foreground contaminants
The High Time Resolution Universe Pulsar Survey -VIII. The Galactic millisecond pulsar population
We have used millisecond pulsars (MSPs) from the southern High Time
Resolution Universe (HTRU) intermediate latitude survey area to simulate the
distribution and total population of MSPs in the Galaxy. Our model makes use of
the scale factor method, which estimates the ratio of the total number of MSPs
in the Galaxy to the known sample. Using our best fit value for the z-height,
z=500 pc, we find an underlying population of MSPs of 8.3(\pm 4.2)*10^4 sources
down to a limiting luminosity of L_min=0.1 mJy kpc^2 and a luminosity
distribution with a steep slope of d\log N/d\log L = -1.45(\pm 0.14). However,
at the low end of the luminosity distribution, the uncertainties introduced by
small number statistics are large. By omitting very low luminosity pulsars, we
find a Galactic population above L_min=0.2 mJy kpc^2 of only 3.0(\pm 0.7)*10^4
MSPs. We have also simulated pulsars with periods shorter than any known MSP,
and estimate the maximum number of sub-MSPs in the Galaxy to be 7.8(\pm
5.0)*10^4 pulsars at L=0.1 mJy kpc^2. In addition, we estimate that the high
and low latitude parts of the southern HTRU survey will detect 68 and 42 MSPs
respectively, including 78 new discoveries. Pulsar luminosity, and hence flux
density, is an important input parameter in the model. Some of the published
flux densities for the pulsars in our sample do not agree with the observed
flux densities from our data set, and we have instead calculated average
luminosities from archival data from the Parkes Telescope. We found many
luminosities to be very different than their catalogue values, leading to very
different population estimates. Large variations in flux density highlight the
importance of including scintillation effects in MSP population studies.Comment: 13 pages, 5 figures, 5 tables. Accepted for publication in MNRA