30 research outputs found

    SlimQuickâ„¢ - associated hepatotoxicity in a woman with alpha-1 antitrypsin heterozygosity

    No full text
    Green tea (Camellia sinensis)-associated hepatotoxicity is reported. However, the presence of alpha-1 antitrypsin MZ phenotype as a predisposing factor to green tea-associated drug-induced liver injury (DILI) is unknown. A previously healthy woman with alpha-1 antitrypsin MZ phenotype who took SlimQuickâ„¢, an herbal supplement containing green tea extract, developed severe hepatotoxicity requiring corticosteroid treatment. Green tea-associated hepatotoxicity is reviewed and alpha-1 antitrypsin MZ phenotype as a predisposing factor to green tea-associated DILI is discussed. Liver biopsy demonstrated marked inflammation with necrosis suggestive of toxic injury with diffuse alpha-1 antitrypsin globule deposition on immunostaining. Corticosteroid therapy resulted in rapid clinical improvement. Alpha-1 antitrypsin MZ phenotype may increase vulnerability to herbal hepatotoxicity

    Prophylactic recombinant factor VIIa for preventing massive transfusion during orthotopic liver transplantation

    No full text
    Objectives: Recombinant human activated factor VIIa has been used prophylactically to mitigate requirements for transfusion in liver transplant. We explored its effectiveness and risks among liver transplant recipients at high risk for massive transfusion. Materials and Methods: We performed a retrospective study of recipients who underwent liver transplant from 2012 to 2015. Patients considered at risk for massive transfusion received up to two 20 μg/kg doses of recombinant human activated factor VIIa, with rescue use permitted for other patients. We used propensity matching to determine the average treatment effects on patients who received recombinant human activated factor VIIa prophylactically to prevent massive transfusion. We determined thromboembolic events from medical record review. Results: Of 234 liver transplant recipients, 38 received prophylactic and 2 received rescue recombinant human activated factor VIIa. We used a prediction model to readily identify those who would receive prophylactic recombinant human activated factor VIIa (C statistic = 0.885; 95% CI, 0.835-0.935). Propensity matching achieved balance, particularly for massive transfusion. Twenty-three of 38 patients (60.5%) who received recombinant human activated factor VIIa and 47 of 76 matched controls (61.8%) experienced massive transfusion. The coefficient for the average treatment effect of prophylactic administration was -0.013 (95% CI, -0.260 to 0.233; P = .92). The cohorts exhibited no difference in number of thromboembolic events (P \u3e .99), although fatal events occurred in 1 patient who had prophylactic and 1 patient who had rescue recombinant human activated factor VIIa. Conclusions: Prophylactic recombinant human activated factor VIIa use in patients at elevated risk of massive transfusion did not affect incidence of massive transfusion and was not associated with an increase in thromboembolic events overall. The lack of clinical benefit and the potential for fatal throm-boembolic events observed with recombinant human activated factor VIIa precluded its prophylactic use in liver transplant recipients

    Validation of predictive models identifying patients at risk for massive transfusion during liver transplantation and their potential impact on blood bank resource utilization

    No full text
    Background: Intraoperative massive transfusion (MT) is common during liver transplantation (LT). A predictive model of MT has the potential to improve use of blood bank resources.Study design and methods: Development and validation cohorts were identified among deceased-donor LT recipients from 2010 to 2016. A multivariable model of MT generated from the development cohort was validated with the validation cohort and refined using both cohorts. The combined cohort also validated the previously reported McCluskey risk index (McRI). A simple modified risk index (ModRI) was then created from the combined cohort. Finally, a method to translate model predictions to a population-specific blood allocation strategy was described and demonstrated for the study population.Results: Of the 403 patients, 60 (29.6%) in the development and 51 (25.5%) in the validation cohort met the definition for MT. The ModRI, derived from variables incorporated into multivariable model, ranged from 0 to 5, where 1 point each was assigned for hemoglobin level of less than 10 g/dL, platelet count of less than 100 × 109 /dL, thromboelastography R interval of more than 6 minutes, simultaneous liver and kidney transplant and retransplantation, and a ModRI of more than 2 defined recipients at risk for MT. The multivariable model, McRI, and ModRI demonstrated good discrimination (c statistic [95% CI], 0.77 [0.70-0.84]; 0.69 [0.62-0.76]; and 0.72 [0.65-0.79], respectively, after correction for optimism). For blood allocation of 6 or 15 units of red blood cells (RBCs) based on risk of MT, the ModRI would prevent unnecessary crossmatching of 300 units of RBCs/100 transplants.Conclusions: Risk indices of MT in LT can be effective for risk stratification and reducing unnecessary blood bank resource utilization
    corecore