9 research outputs found
Basal Ganglia Preferentially Encode Context Dependent Choice in a Two-Armed Bandit Task
Decision is a self-generated phenomenon, which is hard to track with standard time averaging methods, such as peri-event time histograms (PETHs), used in behaving animals. Reasons include variability in duration of events within a task and uneven reaction time of animals. We have developed a temporal normalization method where PETHs were juxtaposed all along task events and compared between neurons. We applied this method to neurons recorded in striatum and GPi of behaving monkeys involved in a choice task. We observed a significantly higher homogeneity of neuron activity profile distributions in GPi than in striatum. Focusing on the period of the task during which the decision was taken, we showed that approximately one quarter of all recorded neurons exhibited tuning functions. These so-called coding neurons had average firing rates that varied as a function of the value of both presented cues, a combination here referred to as context, and/or value of the chosen cue. The tuning functions were used to build a simple maximum likelihood estimation model, which revealed that (i) GPi neurons are more efficient at encoding both choice and context than striatal neurons and (ii) context prediction rates were higher than those for choice. Furthermore, the mutual information between choice or context values and decision period average firing rate was higher in GPi than in striatum. Considered together, these results suggest a convergence process of the global information flow between striatum and GPi, preferentially involving context encoding, which could be used by the network to perform decision-making
Limited Encoding of Effort by Dopamine Neurons in a Cost-Benefit Trade-off Task
International audienc
Primary motor cortex of the parkinsonian monkey: altered neuronal responses to muscle stretch
Exaggeration of the long-latency stretch reflex (LLSR) is a characteristic neurophysiologic feature of Parkinson's disease (PD) that contributes to parkinsonian rigidity. To explore one frequently-hypothesized mechanism, we studied the effects of fast muscle stretches on neuronal activity in the macaque primary motor cortex (M1) before and after the induction of parkinsonism by unilateral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We compared results from the general population of M1 neurons and two antidromically-identified subpopulations: distant-projecting pyramidal-tract type neurons (PTNs) and intra-telecenphalic-type corticostriatal neurons (CSNs). Rapid rotations of elbow or wrist joints evoked short-latency responses in 62% of arm-related M1 neurons. As in PD, the late electromyographic responses that constitute the LLSR were enhanced following MPTP. This was accompanied by a shortening of M1 neuronal response latencies and a degradation of directional selectivity, but surprisingly, no increase in single unit response magnitudes. The results suggest that parkinsonism alters the timing and specificity of M1 responses to muscle stretch. Observation of an exaggerated LLSR with no change in the magnitude of proprioceptive responses in M1 is consistent with the idea that the increase in LLSR gain that contributes to parkinsonian rigidity is localized to the spinal cord
Ventral striatum supports Methylphenidate therapeutic effects on impulsive choices expressed in temporal discounting task
International audienceMethylphenidate (MPH) is a dopamine transporter (DAT) inhibitor used to treat attention-deficit/hyperactivity-disorder (ADHD). ADHD patients make impulsive choices in delay discounting tasks (DDT) and MPH reduces such impulsivity, but its therapeutic site of action remains unknown. Based on the high density of DAT in the striatum, we hypothesized that the striatum, especially the ventral striatum (VS) and caudate nucleus which both encode temporal discounting, can be preferential MPH action sites. To determine whether one of these striatal territories is predominantly involved in the effect of MPH, we trained monkeys to make choices during DDT. First, consistent with clinical observations, we found an overall reduction of impulsive choices with a low dose of MPH administered via intramuscular injections, whereas we reported sedative-like effects with a higher dose. Then, using PET-imaging, we found that the therapeutic reduction of impulsive choices was associated with selective DAT occupancy of MPH in the VS. Finally, we confirmed the selective involvement of the VS in the effect of MPH by testing the animals’ impulsivity with microinjections of the drug in distinct striatal territories. Together, these results show that the therapeutic effect of MPH on impulsive decisions is mainly restricted to its action in the V
Shaping of motor responses by incentive values through the basal ganglia
The striatum is a key neural interface for cognitive and motor information processing in which associations between reward value and visual stimulus can be used to modify motor commands. It can guide action–selection processes that occur farther downstream in the basal ganglia (BG) circuit, by encoding the reward value of an action. Here, we report on the study of simultaneously recorded neurons in the dorsal striatum (input stage of the BG) and the internal pallidum (output stage of the BG) in two monkeys performing a center-out motor task in which the visual targets were associated with different reward probabilities. We show that the tuning curves of motor-related neurons in both structures are modulated by the value of the action before movement initiation and during its execution. The representations of values associated with different actions change dynamically during the task in the internal globus pallidus, with a significant increase in the number of encoding neurons for the chosen target at the onset of movement. This report sheds additional light on the functional differences between the input and output structures of the BG and supports the assertion that the dorsal basal ganglia are involved in movement-related decision-making processes based on incentive values
Selective serotonin reuptake inhibitor treatment retunes emotional valence in primate ventral striatum
Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat psychiatric disorders with affective biases such as depression and anxiety. How SSRIs exert a beneficial action on emotions associated with life events is still unknown. Here we ask whether and how the effectiveness of the SSRI fluoxetine is underpinned by neural mechanisms in the ventral striatum. To address these issues, we studied the spiking activity of neurons in the ventral striatum of monkeys during an approach-avoidance task in which the valence assigned to sensory stimuli was manipulated. Neural responses to positive and negative events were measured before and during a 4-week treatment with fluoxetine. We conducted PET scans to confirm that fluoxetine binds within the ventral striatum at a therapeutic dose. In our monkeys, fluoxetine facilitated approach of rewards and avoidance of punishments. These beneficial effects were associated with changes in tonic and phasic activities of striatal neurons. Fluoxetine increased the spontaneous firing rate of striatal neurons and amplified the number of cells responding to rewards versus punishments, reflecting a drug-induced positive shift in the processing of emotionally valenced information. These findings reveal how SSRI treatment affects ventral striatum neurons encoding positive and negative valence and striatal signaling of emotional information. In addition to a key role in appetitive processing, our results shed light on the involvement of the ventral striatum in aversive processing. Together, the ventral striatum appears to play a central role in the action of SSRIs on emotion processing biases commonly observed in psychiatric disorders
Primary Motor Cortex of the Parkinsonian Monkey: Differential Effects on the Spontaneous Activity of Pyramidal Tract-Type Neurons
Dysfunction of primary motor cortex (M1) is thought to contribute to the pathophysiology of parkinsonism. What specific aspects of M1 function are abnormal remains uncertain, however. Moreover, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those questions were addressed by studying the resting activity of intratelencephalic-type corticostriatal neurons (CSNs) and distant-projecting lamina 5b pyramidal-tract type neurons (PTNs) in the macaque M1 before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Contrary to previous reports, the general population of M1 neurons (i.e., PTNs, CSNs, and unidentified neurons) showed reduced baseline firing rates following MPTP, attributable largely to a marked decrease in PTN firing rates. CSN firing rates were unmodified. Although burstiness and firing patterns remained constant in M1 neurons as a whole and CSNs in particular, PTNs became more bursty post-MPTP and less likely to fire in a regular-spiking pattern. Rhythmic spiking (found in PTNs predominantly) occurred at beta frequencies (14–32 Hz) more frequently following MPTP. These results indicate that MPTP intoxication induced distinct modifications in the activity of different M1 neuronal subtypes. The particular susceptibility of PTNs suggests that PTN dysfunction may be an important contributor to the pathophysiology of parkinsonian motor signs