129 research outputs found
Meteorite cloudy zone formation as a quantitative indicator of paleomagnetic field intensities and cooling rates on planetesimals
Metallic microstructures in slowly-cooled iron-rich meteorites reflect the
thermal and magnetic histories of their parent planetesimals. Of particular
interest is the cloudy zone, a nanoscale intergrowth of Ni-rich islands within
a Ni-poor matrix that forms below 350{\deg}C by spinodal decomposition. The
sizes of the islands have long been recognized as reflecting the
low-temperature cooling rates of meteorite parent bodies. However, a model
capable of providing quantitative cooling rate estimates from island sizes has
been lacking. Moreover, these islands are also capable of preserving a record
of the ambient magnetic field as they grew, but some of the key physical
parameters required for recovering reliable paleointensity estimates from
magnetic measurements of these islands have been poorly constrained. To address
both of these issues, we present a numerical model of the structural and
compositional evolution of the cloudy zone as a function of cooling rate and
local composition. Our model produces island sizes that are consistent with
present-day measured sizes. This model enables a substantial improvement in the
calibration of paleointensity estimates and associated uncertainties. In
particular, we can now accurately quantify the statistical uncertainty
associated with the finite number of islands and the uncertainty on their size
at the time of the record. We use this new understanding to revisit
paleointensities from previous pioneering paleomagnetic studies of cloudy
zones. We show that these could have been overestimated but nevertheless still
require substantial magnetic fields to have been present on their parent
bodies. Our model also allows us to estimate absolute cooling rates for
meteorites that cooled slower than 10000{\deg}C My-1. We demonstrate how these
cooling rate estimates can uniquely constrain the low-temperature thermal
history of meteorite parent bodies.Comment: Manuscript resubmitted after revision
Meteorite cloudy zone formation as a quantitative indicator of paleomagnetic field intensities and cooling rates on planetesimals
Metallic microstructures in slowly-cooled iron-rich meteorites reflect the thermal and magnetic histories of their parent planetesimals. Of particular interest is the cloudy zone, a nanoscale intergrowth of Ni-rich islands within a Ni-poor matrix that forms below ∼350 °C by spinodal decomposition. The sizes of the islands have long been recognized as reflecting the low-temperature cooling rates of meteorite parent bodies. However, a model capable of providing quantitative cooling rate estimates from island sizes has been lacking. Moreover, these islands are also capable of preserving a record of the ambient magnetic field as they grew, but some of the key physical parameters required for recovering reliable paleointensity estimates from magnetic measurements of these islands have been poorly constrained. To address both of these issues, we present a numerical model of the structural and compositional evolution of the cloudy zone as a function of cooling rate and local composition. Our model produces island sizes that are consistent with present-day measured sizes. This model enables a substantial improvement in the calibration of paleointensity estimates and associated uncertainties. In particular, we can now accurately quantify the statistical uncertainty associated with the finite number of islands acquiring the magnetization and the uncertainty on their size at the time of the record. We use this new understanding to revisit paleointensities from previous pioneering paleomagnetic studies of cloudy zones. We show that these could have been overestimated by up to one order of magnitude but nevertheless still require substantial magnetic fields to have been present on their parent bodies. Our model also allows us to estimate absolute cooling rates for meteorites that cooled slower than <10,000 °C My−1. We demonstrate how these cooling rate estimates can uniquely constrain the low-temperature thermal history of meteorite parent bodies. Using the main-group pallasites as an example, we show that our results are consistent with the previously-proposed unperturbed, conductive cooling at low temperature of a ∼200-km radius main-group pallasite parent body
Size Ranges of Magnetic Domain States in Tetrataenite
Paleomagnetic studies of meteorites provide unique constraints on the evolution of magnetic fields in the early solar system. These studies rely on the identification of magnetic minerals that can retain stable magnetizations over ≳4.5 billion years (Ga). The ferromagnetic mineral tetrataenite (γ''-Fe0.5Ni0.5) is found in iron, stony-iron and chondrite meteorite groups. Nanoscale intergrowths of tetrataenite have been shown to carry records of paleomagnetic fields, although the effect of magnetostatic interactions on their magnetic remanence acquisition remains to be fully understood. Tetrataenite can also occur as isolated, non-interacting, nanoscale grains in many meteorite groups, although the paleomagnetic potential of these grains is particularly poorly understood. Here, we aim to improve our understanding of tetrataenite magnetization to refine our knowledge of existing paleomagnetic analyses and broaden the spectrum of meteorite groups that can be used for future paleomagnetic studies. We present the results of analytical calculations and micromagnetic modeling of isolated tetrataenite grains with various geometries. We find that tetrataenite forms a stable single domain state at grain lengths between 6 and ∼160 nm dependent on its elongation. It also possesses a magnetization resistant to viscous remagnetization over the lifetime of the solar system at 293 K. At larger grain sizes, tetrataenite's lowest energy state is a lamellar two-domain state, stable at Ga-scale timescales. Unlike many other magnetic minerals, tetrataenite does not form a single-vortex domain state due to its large uniaxial anisotropy. Our results show that single domain and two-domain tetrataenite grains carry an extremely stable magnetization and therefore are promising for paleomagnetic studies
Meteorite evidence for partial differentiation and protracted accretion of planetesimals.
Modern meteorite classification schemes assume that no single planetary body could be source of both unmelted (chondritic) and melted (achondritic) meteorites. This dichotomy is a natural outcome of formation models assuming that planetesimal accretion occurred nearly instantaneously. However, it has recently been proposed that the accretion of many planetesimals lasted over ≳1 million years (Ma). This could have resulted in partially differentiated internal structures, with individual bodies containing iron cores, achondritic silicate mantles, and chondritic crusts. This proposal can be tested by searching for a meteorite group containing evidence for these three layers. We combine synchrotron paleomagnetic analyses with thermal, impact, and collisional evolution models to show that the parent body of the enigmatic IIE iron meteorites was such a partially differentiated planetesimal. This implies that some chondrites and achondrites simultaneously coexisted on the same planetesimal, indicating that accretion was protracted and that apparently undifferentiated asteroids may contain melted interiors
Water Condensation Zones around Main Sequence Stars
Understanding the set of conditions that allow rocky planets to have liquid
water on their surface -- in the form of lakes, seas or oceans -- is a major
scientific step to determine the fraction of planets potentially suitable for
the emergence and development of life as we know it on Earth. This effort is
also necessary to define and refine the so-called "Habitable Zone" (HZ) in
order to guide the search for exoplanets likely to harbor remotely detectable
life forms. Until now, most numerical climate studies on this topic have
focused on the conditions necessary to maintain oceans, but not to form them in
the first place. Here we use the three-dimensional Generic Planetary Climate
Model (PCM), historically known as the LMD Generic Global Climate Model (GCM),
to simulate water-dominated planetary atmospheres around different types of
Main-Sequence stars. The simulations are designed to reproduce the conditions
of early ocean formation on rocky planets due to the condensation of the
primordial water reservoir at the end of the magma ocean phase. We show that
the incoming stellar radiation (ISR) required to form oceans by condensation is
always drastically lower than that required to vaporize oceans. We introduce a
Water Condensation Limit, which lies at significantly lower ISR than the inner
edge of the HZ calculated with three-dimensional numerical climate simulations.
This difference is due to a behavior change of water clouds, from low-altitude
dayside convective clouds to high-altitude nightside stratospheric clouds.
Finally, we calculated transit spectra, emission spectra and thermal phase
curves of TRAPPIST-1b, c and d with H2O-rich atmospheres, and compared them to
CO2 atmospheres and bare rock simulations. We show using these observables that
JWST has the capability to probe steam atmospheres on low-mass planets, and
could possibly test the existence of nightside water clouds.Comment: Accepted for publication in Astronomy & Astrophysic
Genome-wide profiling of G protein-coupled receptors in cerebellar granule neurons using high-throughput, real-time PCR
<p>Abstract</p> <p>Background</p> <p>G protein-coupled receptors (GPCRs) are major players in cell communication, regulate a whole range of physiological functions during development and throughout adult life, are affected in numerous pathological situations, and constitute so far the largest class of drugable targets for human diseases. The corresponding genes are usually expressed at low levels, making accurate, genome-wide quantification of their expression levels a challenging task using microarrays.</p> <p>Results</p> <p>We first draw an inventory of all endo-GPCRs encoded in the murine genome. To profile GPCRs genome-wide accurately, sensitively, comprehensively, and cost-effectively, we designed and validated a collection of primers that we used in quantitative RT-PCR experiments. We experimentally validated a statistical approach to analyze genome-wide, real-time PCR data. To illustrate the usefulness of this approach, we determined the repertoire of GPCRs expressed in cerebellar granule neurons and neuroblasts during postnatal development.</p> <p>Conclusions</p> <p>We identified tens of GPCRs that were not detected previously in this cell type; these GPCRs represent novel candidate players in the development and survival of cerebellar granule neurons. The sequences of primers used in this study are freely available to those interested in quantifying GPCR expression comprehensively.</p
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Performance status is the most powerful risk factor for early death among patients with advanced soft tissue sarcoma The European Organisation for Research and Treatment of Cancer – Soft Tissue and Bone Sarcoma Group (STBSG) and French Sarcoma Group (FSG) study
BACKGROUND: We investigated prognostic factors (PFs) for 90-day mortality in a large cohort of advanced/metastatic soft tissue sarcoma (STS) patients treated with first-line chemotherapy. METHODS: The PFs were identified by both logistic regression analysis and probability tree analysis in patients captured in the Soft Tissue and Bone Sarcoma Group (STBSG) database (3002 patients). Scores derived from the logistic regression analysis and algorithms derived from probability tree analysis were subsequently validated in an independent study cohort from the French Sarcoma Group (FSG) database (404 patients). RESULTS: The 90-day mortality rate was 8.6 and 4.5% in both cohorts. The logistic regression analysis retained performance status (PS; odds ratio (OR) = 3.83 if PS = 1, OR = 12.00 if PS >= 2), presence of liver metastasis (OR = 2.37) and rare site metastasis (OR = 2.00) as PFs for early death. The CHAID analysis retained PS as a major discriminator followed by histological grade (only for patients with PS >= 2). In both models, PS was the most powerful PF for 90-day mortality. CONCLUSION: Performance status has to be taken into account in the design of further clinical trials and is one of the most important parameters to guide patient management. For those patients with poor PS, expected benefits from therapy should be weighed up carefully against the anticipated toxicities. British Journal of Cancer (2011) 104, 1544-1550. doi: 10.1038/bjc.2011.136 www.bjcancer.com Published online 19 April 2011 (C) 2011 Cancer Research U
- …