2,092 research outputs found
The Phases Differential Astrometry Data Archive. IV. The Triple Star Systems 63 Gem A and HR 2896
Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known âŸ2 day subsystem in the triple system 63 Gem A and have detected a previously unknown two-year Keplerian wobble superimposed on the visual orbit of the much longer period (213 years) binary system HR 2896. 63 Gem A was already known to be triple from spectroscopic work, and absorption lines from all three stars can be identified and their individual Doppler shifts measured; new velocities for all three components are presented to aid in constraining the orbit and measuring the stellar masses. In fact, 63 Gem itself is a sextuple system: the hierarchical triple (Aa1-Aa2)-Ab (in which Aa1 and Aa2 orbit each other with a rapid period just under 2 days, and Ab orbits these every two years), plus three distant common proper motion companions. The very small astrometric perturbation caused by the inner pair in 63 Gem A stretches the limits of current astrometric capabilities, but PHASES observations are able to constrain the orientation of the orbit. The two bright stars comprising the HR 2896 long-period (213 year) system have a combined spectral type of K0III and the newly detected object's mass estimate places it in the regime of being an M dwarf. The motion of the stars are slow enough that their spectral features are always blended, preventing Doppler studies. The PHASES measurements and radial velocities (when available) have been combined with lower precision single-aperture measurements covering a much longer time frame (from eyepiece measurements, speckle interferometry, and adaptive optics) to improve the characterization of the long-period orbits in both binaries. The visual orbits of the short- and long-period systems are presented for both systems and used to calculate two possible values of the mutual inclinations between inner and outer orbits of 152° ± 12° or a less likely value of 31° ± 11° for 63 Gem A and 10.°2 ± 2.°4 or 171.°2 ± 2.°8 for HR 2896. The first is not coplanar, whereas the second is either nearly coplanar or anti-coplanar
The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeineâs effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0â200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p \u3c 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes
The orbits of the quadruple star system 88 Tau A from PHASES differential astrometry and radial velocity
We have used high precision differential astrometry from the Palomar
High-precision Astrometric Search for Exoplanet Systems (PHASES) project and
radial velocity measurements covering a time-span of 20 years to determine the
orbital parameters of the 88 Tau A system. 88 Tau is a complex hierarchical
multiple system comprising a total of six stars; we have studied the brightest
4, consisting of two short-period pairs orbiting each other with an 18-year
period. We present the first orbital solution for one of the short-period
pairs, and determine the masses of the components and distance to the system to
the level of a few percent. In addition, our astrometric measurements allow us
to make the first determination of the mutual inclinations of the orbits. We
find that the sub-systems are not coplanar.Comment: Corrected Author Ordering; 12 Pages, Accepted for publication in Ap
The PHASES Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems
The Palomar High-precision Astrometric Search for Exoplanet Systems monitored
51 subarcsecond binary systems to evaluate whether tertiary companions as small
as Jovian planets orbited either the primary or secondary stars, perturbing
their otherwise smooth Keplerian motions. Six binaries are presented that show
evidence of substellar companions orbiting either the primary or secondary
star. Of these six systems, the likelihoods of two of the detected
perturbations to represent real objects are considered to be "high confidence",
while the remaining four systems are less certain and will require continued
observations for confirmation.Comment: 16 Pages, Accepted to A
PHASES High Precision Differential Astrometry of delta Equulei
delta Equulei is among the most well-studied nearby binary star systems.
Results of its observation have been applied to a wide range of fundamental
studies of binary systems and stellar astrophysics. It is widely used to
calibrate and constrain theoretical models of the physics of stars. We report
27 high precision differential astrometry measurements of delta Equulei from
the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES).
The median size of the minor axes of the uncertainty ellipses for these
measurements is 26 micro-arcseconds. These data are combined with previously
published radial velocity data and other previously published differential
astrometry measurements using other techniques to produce a combined model for
the system orbit. The distance to the system is determined to within a
twentieth of a parsec and the component masses are determined at the level of a
percent. The constraints on masses and distance are limited by the precisions
of the radial velocity data; we outline plans improve this deficiency and
discuss the outlook for further study of this binary.Comment: Accepted by AJ. Complete versions of tables 2-7 now available at
http://stuff.mit.edu/~matthew1/deltaEquTables/ (removed from astroph server
Sensitivity Analyses of Exoplanet Occurrence Rates from Kepler and Gaia
We infer the number of planets per star as a function of orbital period and planet size using Kepler archival data products with updated stellar properties from the Gaia Data Release 2. Using hierarchical Bayesian modeling and Hamiltonian Monte Carlo, we incorporate planet radius uncertainties into an inhomogeneous Poisson point process model. We demonstrate that this model captures the general features of the outcome of the planet formation and evolution around GK stars and provides an infrastructure to use the Kepler results to constrain analytic planet distribution models. We report an increased mean and variance in the marginal posterior distributions for the number of planets per GK star when including planet radius measurement uncertainties. We estimate the number of planets per GK star between 0.75 and 2.5 Râ and with orbital periods of 50â300 days to have a 68% credible interval of 0.49â0.77 and a posterior mean of 0.63. This posterior has a smaller mean and a larger variance than the occurrence rate calculated in this work and in Burke et al. for the same parameter space using the Q1âQ16 (previous Kepler planet candidate and stellar catalog). We attribute the smaller mean to many of the instrumental false positives at longer orbital periods being removed from the DR25 catalog. We find that the accuracy and precision of our hierarchical Bayesian model posterior distributions are less sensitive to the total number of planets in the sample, and more so for the characteristics of the catalog completeness and reliability and the span of the planet parameter space
Is âincidental findingâ the best term?: a study of patientsâ preferences
There is debate within the genetics community about the optimal term to describe genetic variants unrelated to the test indication, but potentially important for health. Given the lack of consensus and the importance of adopting terminology that promotes effective clinical communication, we sought the opinion of clinical genetics patients
Beauty in Disability: An Aesthetics for Dance and for Life
To what extent does dance contribute to an ideal of beauty that can enrich human quality of life? To what extent are standards of beauty predicated on an ideal human body that has no disability? In this chapter, we show how conceptions of proportionality, perfection, and ethereality from the Ancient Greeks through the 19th century can still be seen today in some kinds of dance, particularly in ballet. Disability studies and disability-inclusive dance companies, however, have started to change this. The disabled person can be beautiful, we will show, in dance and in life, under a disability aesthetics that follows Edmund Burke (1730-1797) and that suggests an alternative standard of beauty, which we call âbeauty-in-experience,â where beauty is perceived in the qualitative experience of abled and disabled dancers moving together in dance.https://ecommons.udayton.edu/books/1023/thumbnail.jp
ApoE isoform does not influence skeletal muscle regeneration in adult mice
Introduction: Apolipoprotein E (ApoE) has been shown to be necessary for proper skeletal muscle regeneration. Consistent with this finding, single-cell RNA-sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that Apoe is a top marker of quiescent MuSCs that is downregulated upon activation. The purpose of this study was to determine if muscle regeneration is altered in mice which harbor one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4.Methods: Histomorphometric analyses were employed to assess muscle regeneration in ApoE2, E3, and E4 mice after 14Â days of recovery from barium chloride-induced muscle damage in vivo, and primary MuSCs were isolated to assess proliferation and differentiation of ApoE2, E3, and E4 MuSCs in vitro.Results: There was no difference in the basal skeletal muscle phenotype of ApoE isoforms as evaluated by section area, myofiber cross-sectional area (CSA), and myonuclear and MuSC abundance per fiber. Although there were no differences in fiber-type frequency in the soleus, Type IIa relative frequency was significantly lower in plantaris muscles of ApoE4 mice compared to ApoE3. Moreover, ApoE isoform did not influence muscle regeneration as assessed by fiber frequency, fiber CSA, and myonuclear and MuSC abundance. Finally, there were no differences in the proliferative capacity or myogenic differentiation potential of MuSCs between any ApoE isoform.Discussion: Collectively, these data indicate nominal effects of ApoE isoform on the ability of skeletal muscle to regenerate following injury or the in vitro MuSC phenotype
Can One Trust Quantum Simulators?
Various fundamental phenomena of strongly-correlated quantum systems such as
high- superconductivity, the fractional quantum-Hall effect, and quark
confinement are still awaiting a universally accepted explanation. The main
obstacle is the computational complexity of solving even the most simplified
theoretical models that are designed to capture the relevant quantum
correlations of the many-body system of interest. In his seminal 1982 paper
[Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models
might be solved by "simulation" with a new type of computer whose constituent
parts are effectively governed by a desired quantum many-body dynamics.
Measurements on this engineered machine, now known as a "quantum simulator,"
would reveal some unknown or difficult to compute properties of a model of
interest. We argue that a useful quantum simulator must satisfy four
conditions: relevance, controllability, reliability, and efficiency. We review
the current state of the art of digital and analog quantum simulators. Whereas
so far the majority of the focus, both theoretically and experimentally, has
been on controllability of relevant models, we emphasize here the need for a
careful analysis of reliability and efficiency in the presence of
imperfections. We discuss how disorder and noise can impact these conditions,
and illustrate our concerns with novel numerical simulations of a paradigmatic
example: a disordered quantum spin chain governed by the Ising model in a
transverse magnetic field. We find that disorder can decrease the reliability
of an analog quantum simulator of this model, although large errors in local
observables are introduced only for strong levels of disorder. We conclude that
the answer to the question "Can we trust quantum simulators?" is... to some
extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional
explanations, added references...
- âŠ