471 research outputs found

    Local Compressibility Measurements of Correlated States in Suspended Bilayer Graphene

    Full text link
    Bilayer graphene has attracted considerable interest due to the important role played by many-body effects, particularly at low energies. Here we report local compressibility measurements of a suspended graphene bilayer. We find that the energy gaps at filling factors v = 4 do not vanish at low fields, but instead merge into an incompressible region near the charge neutrality point at zero electric and magnetic field. These results indicate the existence of a zero-field ordered state and are consistent with the formation of either an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At higher fields, we measure the intrinsic energy gaps of broken-symmetry states at v = 0, 1 and 2, and find that they scale linearly with magnetic field, yet another manifestation of the strong Coulomb interactions in bilayer graphene.Comment: 9 pages, including 4 figures and supplementary material

    Notch Signaling Regulates Motor Neuron Differentiation of Human Embryonic Stem Cells

    Full text link
    In the pMN domain of the spinal cord, Notch signaling regulates the balance between motor neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differentiation. Here, we sought to study the role of Notch signaling in regulation of the switch from the pMN progenitor state to differentiated motor neurons in a human model system. Human embryonic stem cells (hESCs) were directed to differentiate to pMN‐like progenitor cells by the inductive action of retinoic acid and a Shh agonist, purmorphamine. We found that the expression of the Notch signaling effector Hes5 was induced in hESC‐derived pMN‐like progenitors and remained highly expressed when they were cultured under conditions favoring motor neuron differentiation. Inhibition of Notch signaling by a γ‐secretase inhibitor in the differentiating pMN‐like progenitor cells decreased Hes5 expression and enhanced the differentiation toward motor neurons. Conversely, over‐expression of Hes5 in pMN‐like progenitor cells during the differentiation interfered with retinoic acid‐ and purmorphamine‐induced motor neuron differentiation and inhibited the emergence of motor neurons. Inhibition of Notch signaling had a permissive rather than an inductive effect on motor neuron differentiation. Our results indicate that Notch signaling has a regulatory role in the switch from the pMN progenitor to the differentiated motor neuron state. Inhibition of Notch signaling can be harnessed to enhance the differentiation of hESCs toward motor neurons. Stem Cells 2015;33:403–415Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110586/1/stem1873.pd

    1/4 is the new 1/2: Interaction-induced Unification of Quantum Anomalous and Spin Hall Effects

    Full text link
    We introduce interactions into two general models for quantum spin Hall physics. Although the traditional picture is that such physics appears when the two lower spinful bands are occupied, that is, half-filling, we show using determinantal quantum Monte Carlo as well as from an exactly solvable model that in the presence of strong interactions, the quarter-filled state instead exhibits the quantum spin Hall effect at high temperature. A topological Mott insulator is the underlying cause. The peak in the spin susceptibility is consistent with a possible ferromagnetic state at T=0T=0. The onset of such magnetism would convert the quantum spin Hall to a quantum anomalous Hall effect. We argue that it is the consistency with the Lieb-Schultz-Mattis theorem\cite{lsm1,lsm2} for interacting systems with an odd number of charges per unit cell that underlies the emergence of the quantum anomalous Hall effect as a low-temperature symmetry-broken phase of the quantum spin Hall effect. While such a symmetry-broken phase typically is accompanied by a gap, we find that the interaction strength must exceed a critical value for the gap to form using quantum Monte Carlo dynamical cluster approximation simulations. Hence, we predict that topology can obtain in a gapless phase but only in the presence of interactions in dispersive bands. These results are applied to recent experiments on moir\'e systems and shown to be consistent with valley-coherent quantum anomalous Hall physics.Comment: Figure 4e,f added as well as a referenc

    Mapping twist-tuned multi-band topology in bilayer WSe2_2

    Full text link
    Semiconductor moir\'e superlattices have been shown to host a wide array of interaction-driven ground states. However, twisted homobilayers have been difficult to study in the limit of large moir\'e wavelength, where interactions are most dominant, and despite numerous predictions of nontrivial topology in these homobilayers, experimental evidence has remained elusive. Here, we conduct local electronic compressibility measurements of twisted bilayer WSe2_2 at small twist angles. We demonstrate multiple topological bands which host a series of Chern insulators at zero magnetic field near a 'magic angle' around 1.23∘1.23^\circ. Using a locally applied electric field, we induce a topological quantum phase transition at one hole per moir\'e unit cell. Furthermore, by measuring at a variety of local twist angles, we characterize how the interacting ground states of the underlying honeycomb superlattice depend on the size of the moir\'e unit cell. Our work establishes the topological phase diagram of a generalized Kane-Mele-Hubbard model in tWSe2_2, demonstrating a tunable platform for strongly correlated topological phases

    Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle twisted bilayer graphene

    Get PDF
    The flat electronic bands in magic-angle twisted bilayer graphene (MATBG) host a variety of correlated insulating ground states, many of which are predicted to support charged excitations with topologically non-trivial spin and/or valley skyrmion textures. However, it has remained challenging to experimentally address their ground state order and excitations, both because some of the proposed states do not couple directly to experimental probes, and because they are highly sensitive to spatial inhomogeneities in real samples. Here, using a scanning single-electron transistor, we observe thermodynamic gaps at even integer moir\'e filling factors at low magnetic fields. We find evidence of a field-tuned crossover from charged spin skyrmions to bare particle-like excitations, suggesting that the underlying ground state belongs to the manifold of strong-coupling insulators. From the spatial dependence of these states and the chemical potential variation within the flat bands, we infer a link between the stability of the correlated ground states and local twist angle and strain. Our work advances the microscopic understanding of the correlated insulators in MATBG and their unconventional excitations.Comment: Supplementary information available at https://www.nature.com/articles/s41467-023-42275-

    Tunable spin and valley excitations of correlated insulators in Γ\Gamma-valley moir\'e bands

    Full text link
    Moir\'e superlattices formed from transition metal dichalcogenides (TMDs) have been shown to support a variety of quantum electronic phases that are highly tunable using applied electromagnetic fields. While the valley character of the low-energy states dramatically affects optoelectronic properties in the constituent TMDs, this degree of freedom has yet to be fully explored in moir\'e systems. Here, we establish twisted double bilayer WSe2_2 as an experimental platform to study electronic correlations within Γ\Gamma-valley moir\'e bands. Through a combination of local and global electronic compressibility measurements, we identify charge-ordered phases at multiple integer and fractional moir\'e band fillings ν\nu. By measuring the magnetic field dependence of their energy gaps and the chemical potential upon doping, we reveal spin-polarized ground states with novel spin polaron quasiparticle excitations. In addition, an applied displacement field allows us to realize a new mechanism of metal-insulator transition at ν=−1\nu = -1 driven by tuning between Γ\Gamma- and KK-valley moir\'e bands. Together, our results demonstrate control over both the spin and valley character of the correlated ground and excited states in this system

    Hofstadter states and reentrant charge order in a semiconductor moir\'e lattice

    Full text link
    The emergence of moir\'e materials with flat bands provides a platform to systematically investigate and precisely control correlated electronic phases. Here, we report local electronic compressibility measurements of a twisted WSe2_2/MoSe2_2 heterobilayer which reveal a rich phase diagram of interpenetrating Hofstadter states and electron solids. We show that this reflects the presence of both flat and dispersive moir\'e bands whose relative energies, and therefore occupations, are tuned by density and magnetic field. At low densities, competition between moir\'e bands leads to a transition from commensurate arrangements of singlets at doubly occupied sites to triplet configurations at high fields. Hofstadter states (i.e., Chern insulators) are generally favored at high densities as dispersive bands are populated, but are suppressed by an intervening region of reentrant charge-ordered states in which holes originating from multiple bands cooperatively crystallize. Our results reveal the key microscopic ingredients that favor distinct correlated ground states in semiconductor moir\'e systems, and they demonstrate an emergent lattice model system in which both interactions and band dispersion can be experimentally controlled
    • …
    corecore