4 research outputs found

    Extremal black holes, gravitational entropy and nonstationary metric fields

    Full text link
    We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and correspond to a single classical microstate. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time tt labels a continuous set of classical microstates, the phase space [ hab(t),Pab(t) ][\,h_{ab}(t), P^{ab}(t)\,], where habh_{ab} is a three-metric induced on a spacelike hypersurface Σt\Sigma_t and PabP^{ab} is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of the classical microstates in the interior since the parameter tt which labels the states lies anywhere between 0 and 2M. We provide numerical evidence from recent simulations of gravitational collapse in isotropic coordinates that the entropy of the Schwarzschild black hole stems from the region inside and near the event horizon where the metric fields are nonstationary; the rest of the spacetime, which is static, makes no contribution. Extremal black holes have an event horizon but in contrast to non-extremal black holes, their extended spacetimes do not possess a bifurcate Killing horizon. This is consistent with the fact that extremal black holes are time-independent and therefore have no distinct time-reverse.Comment: 12 pages, 2 figures. To appear in Class. and Quant. Gravity. Based on an essay selected for honorable mention in the 2010 gravity research foundation essay competitio
    corecore