854 research outputs found

    Geometry Depth Consistency in RGBD Relative Pose Estimation

    Full text link
    Relative pose estimation for RGBD cameras is crucial in a number of applications. Previous approaches either rely on the RGB aspect of the images to estimate pose thus not fully making use of depth in the estimation process or estimate pose from the 3D cloud of points that each image produces, thus not making full use of RGB information. This paper shows that if one pair of correspondences is hypothesized from the RGB-based ranked-ordered correspondence list, then the space of remaining correspondences is restricted to corresponding pairs of curves nested around the hypothesized correspondence, implicitly capturing depth consistency. This simple Geometric Depth Constraint (GDC) significantly reduces potential matches. In effect this becomes a filter on possible correspondences that helps reduce the number of outliers and thus expedites RANSAC significantly. As such, the same budget of time allows for more RANSAC iterations and therefore additional robustness and a significant speedup. In addition, the paper proposed a Nested RANSAC approach that also speeds up the process, as shown through experiments on TUM, ICL-NUIM, and RGBD Scenes v2 datasets

    Vermonters’ Opinions on Low-Dose CT Lung Cancer Screening

    Get PDF
    Introduction: Lung cancer is the number one cause of cancer death among men and women in Vermont and the United States. Smoking increases the risk of lung cancer—nearly 90% of lung cancer is due to smoking. Frequently, lung cancers do not present clinically until they are advanced stage and therefore prognosis is poor. However, if detected early lung cancers are more operable and patients have better outcomes. In December 2013 the US Preventive Services Task Force released new guidelines for lung cancer screening among current and former smokers ages 55 to 80. It is recommended that current and former (within 15 years of quitting) smokers of 30 pack years receive an annual low-dose CT scan. The objective of this project was to assess the level of knowledge and attitudes towards lung cancer screening with low-dose CT scanning among Vermonters in the Burlington area.https://scholarworks.uvm.edu/comphp_gallery/1205/thumbnail.jp

    Intercellular Friction and Motility Drive Orientational Order in Cell Monolayers

    Full text link
    Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction endows the monolayer with a finite viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of +1/2 nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems

    Insecticide Resistance in Malaria Vectors: An Update at a Global Scale

    Get PDF
    Malaria remains the deadliest vector-borne disease in the world. With nearly half of the world’s population at risk, 216 million people suffered from malaria in 2016, with over 400,000 deaths, mainly in sub-Saharan Africa. Important global efforts have been made to eliminate malaria leading to significant reduction in malaria cases and mortality in Africa by 42% and 66%, respectively. Early diagnosis, improved drug therapies and better health infrastructure are key components, but this extraordinary success is mainly due the use of long-lasting insecticidal nets (LLINs) and indoor residual sprayings (IRS) of insecticide. Unfortunately, the emergence and spread of resistance in mosquito populations against insecticides is jeopardising the effectiveness of the most efficient malaria control interventions. To help establish suitable resistance management strategies, it is vital to better understand the distribution of resistance, its mechanisms and impact on effectiveness of control interventions and malaria transmission. In this chapter, we present the current status of insecticide resistance worldwide in main malaria vectors as well as its impact on malaria transmission, and discuss the molecular mechanisms and future perspectives
    corecore