14 research outputs found

    Comorbid mental disorders in substance users from a single catchment area - a clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment of patients with substance use disorders (SUDs) requires an awareness of their comorbid mental disorders and vice versa. The prevalence of comorbidity in first-time-admitted SUD patients has been insufficiently studied. Diagnosing comorbidity in substance users is complicated by symptom overlap, symptom fluctuations, and the limitations of the assessment methods. The aim of this study was to diagnose all mental disorders in substance users living in a single catchment area, without any history of treatment for addiction or psychiatric disorders, admitted consecutively to the specialist health services. The prevalence of substance-induced versus substance-independent disorders according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), in SUD patients will be described.</p> <p>Methods</p> <p>First-time consecutively admitted patients from a single catchment area, aged 16 years or older, admitted to addiction clinics or departments of psychiatry as outpatients or inpatients will be screened for substance-related problems using the Alcohol Use Disorder Identification Test and the Drug Use Disorder Identification Test. All patients with scores above the cutoff value will be asked to participate in the study. The patients included will be diagnosed for SUD and other axis I disorders by a psychiatrist using the Psychiatric Research Interview for Substance and Mental Disorders. This interview was designed for the diagnosis of primary and substance-induced disorders in substance users. Personality disorders will be assessed according to the Structured Clinical Interview for DSM-IV axis II disorders. The Symptom Checklist-90-Revised, the Inventory of Depressive Symptoms, the Montgomery Asberg Depression Rating Scale, the Young Mania Rating Scale, and the Angst Hypomania Check List will be used for additional diagnostic assessments. The sociodemographic data will be recorded with the Stanley Foundation's Network Entry Questionnaire. Biochemical assessments will reveal somatic diseases that may contribute to the patient's symptoms.</p> <p>Discussion</p> <p>This study is unique because the material represents a complete sample of first-time-admitted treatment seekers with SUD from a single catchment area. Earlier studies have not focused on first-time-admitted patients, so chronically ill patients, may have been overrepresented in those samples. This study will contribute new knowledge about mental disorders in first-time-admitted SUD patients.</p

    Restoration of Kv7 Channel-Mediated Inhibition Reduces Cued-Reinstatement of Cocaine Seeking

    Full text link
    Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and after hyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues.National Institute on Drug Abuse [F31-DA-036989, T32-DA-007288, R01-DA-027664, R01-NS-098772, R01-DA-042852, P50-DA-015369, R01-DA-033342A]6 month embargo; published online: 25 April 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons

    Full text link
    Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here, we show that repeated cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. We show further, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1, or local knockout of Rac1 from floxed Rac1 mice, is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 mutant, or light activation of a photoactivatible form of Rac1, blocks the ability of repeated cocaine to produce this effect. Downregulation of Rac1 activity in nucleus accumbens likewise promotes behavioral responses to cocaine, with Rac1 activation producing the opposite effect. These findings establish an important role for Rac1 signaling in mediating structural and behavioral plasticity to cocaine
    corecore