4 research outputs found

    Automatic Registration of Mass Spectrometry Imaging Data Sets to the Allen Brain Atlas

    No full text
    Mass spectrometry imaging holds great potential for understanding the molecular basis of neurological disease. Several key studies have demonstrated its ability to uncover disease-related biomolecular changes in rodent models of disease, even if highly localized or invisible to established histological methods. The high analytical reproducibility necessary for the biomedical application of mass spectrometry imaging means it is widely developed in mass spectrometry laboratories. However, many lack the expertise to correctly annotate the complex anatomy of brain tissue, or have the capacity to analyze the number of animals required in preclinical studies, especially considering the significant variability in sizes of brain regions. To address this issue, we have developed a pipeline to automatically map mass spectrometry imaging data sets of mouse brains to the Allen Brain Reference Atlas, which contains publically available data combining gene expression with brain anatomical locations. Our pipeline enables facile and rapid interanimal comparisons by first testing if each animalā€™s tissue section was sampled at a similar location and enabling the extraction of the biomolecular signatures from specific brain regions

    Tumor Classification of Six Common Cancer Types Based on Proteomic Profiling by MALDI Imaging

    No full text
    In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, <i>n</i> = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (<i>n</i> = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site

    Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding

    No full text
    The combination of mass spectrometry imaging and histology has proven a powerful approach for obtaining molecular signatures from specific cells/tissues of interest, whether to identify biomolecular changes associated with specific histopathological entities or to determine the amount of a drug in specific organs/compartments. Currently there is no software that is able to explicitly register mass spectrometry imaging data spanning different ionization techniques or mass analyzers. Accordingly, the full capabilities of mass spectrometry imaging are at present underexploited. Here we present a fully automated generic approach for registering mass spectrometry imaging data to histology and demonstrate its capabilities for multiple mass analyzers, multiple ionization sources, and multiple tissue types

    Tumor Classification of Six Common Cancer Types Based on Proteomic Profiling by MALDI Imaging

    No full text
    In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, <i>n</i> = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (<i>n</i> = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site
    corecore