10 research outputs found

    Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides

    Get PDF
    A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration

    Natural wetlands are efficient at providing long-term metal remediation of freshwater systems polluted by acid mine drainage

    No full text
    This study describes the first long-term (14-year) evaluation of the efficacy of an established (>100 years) natural wetland to remediate highly acidic mine drainage (AMD). Although natural wetlands are highly valued for their biodiversity, this study demonstrates that they also provide important ecosystem service functions through their ability to consistently and reliably improve water quality by mitigating AMD. The Afon Goch river flows from Parys Mountain copper mine via a natural wetland, and was the major source of Zn and Cu contamination to the Irish Sea. Prior to 2003 the wetland received severe acidic metal contamination and retained a large proportion of the contamination (55, 64, and 37% in dissolved Fe, Zn, and Cu) leading to a greatly reduced metal flow to the Irish Sea. Reduced wetland loadings midway through the sampling period led to a reduction of metals by 83-94% and a pH increase from 2.7 to 5.5, resulting in long-term improvements in the downstream benthic invertebrate community. High root metal accumulation by the dominant wetland plant species and the association of acidophilic bacteria in the wetland rhizosphere indicate that multiple interacting processes provide an efficient and self-sustaining system to remediate AMD
    corecore