742 research outputs found

    Exploring the S-Matrix of Massless Particles

    Full text link
    We use the recently proposed generalised on-shell representation for scattering amplitudes and a consistency test to explore the space of tree-level consistent couplings in four-dimensional Minkowski spacetime. The extension of the constructible notion implied by the generalised on-shell representation, i.e. the possibility to reconstruct at tree level all the scattering amplitudes from the three-particle ones, together with the imposition of the consistency conditions at four-particle level, allow to rediscover all the known theories and their algebra structure, if any. Interestingly, this analysis seems to leave room for high-spin couplings, provided that at least the requirement of locality is weakened. We do not claim to have found tree-level consistent high-spin theories, but rather that our methods show signatures of them and very likely, with a suitable modification, they can be a good framework to perform a systematic search.Comment: 44 pages, 1 figur

    On Tree Amplitudes in Gauge Theory and Gravity

    Full text link
    The BCFW recursion relations provide a powerful way to compute tree amplitudes in gauge theories and gravity, but only hold if some amplitudes vanish when two of the momenta are taken to infinity in a particular complex direction. This is a very surprising property, since individual Feynman diagrams all diverge at infinite momentum. In this paper we give a simple physical understanding of amplitudes in this limit, which corresponds to a hard particle with (complex) light-like momentum moving in a soft background, and can be conveniently studied using the background field method exploiting background light-cone gauge. An important role is played by enhanced spin symmetries at infinite momentum--a single copy of a "Lorentz" group for gauge theory and two copies for gravity--which together with Ward identities give a systematic expansion for amplitudes at large momentum. We use this to study tree amplitudes in a wide variety of theories, and in particular demonstrate that certain pure gauge and gravity amplitudes do vanish at infinity. Thus the BCFW recursion relations can be used to compute completely general gluon and graviton tree amplitudes in any number of dimensions. We briefly comment on the implications of these results for computing massive 4D amplitudes by KK reduction, as well understanding the unexpected cancelations that have recently been found in loop-level gravity amplitudes.Comment: 22 pages, 3 figure

    Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator

    Get PDF
    Motivated by the development of on-going optomechanical experiments aimed at constraining non-local effects inspired by some quantum gravity scenarios, the Hamiltonian formulation of a non-local harmonic oscillator, and its coupling to a cavity field mode(s), is investigated. In particular, we consider the previously studied model of non-local oscillators obtained as the nonrelativistic limit of a class of non-local Klein-Gordon operators, f, with f an analytical function. The results of previous works, in which the interaction was not included, are recovered and extended by way of standard perturbation theory. At the same time, the perturbed energy spectrum becomes available in this formulation, and we obtain the Langevin's equations characterizing the interacting system

    Combining roller crimpers and flaming for the termination of cover crops in herbicide-free no-till cropping systems

    Get PDF
    The termination of cover crops in conventional no-till systems is mostly conducted mechanically in combination with herbicides. Combining flaming and roller crimpers could be a viable solution to avoid using herbicides for cover crop termination in farming systems where herbicides are banned, or at least to reduce their use in an integrated management approach. This research tested the effects of flaming used in combination with three different types of roller crimpers to terminate a fall-sown cover crop mixture of winter pea and barley. The cover crop termination rate was visually assessed in terms of percentage of green cover provided by cover crop plants at different intervals from the termination date, and estimated using a log-logistic non-linear regression model with four parameters. Machine performance data are also reported. The results show that, irrespective of the roller type, flaming significantly boosted the effect of the roller crimpers. In fact, an economic threshold for cover crop suppression of 85% was reached only when the rollers were used in combination with flaming. Nevertheless, none of the methods were able to reach the 100% of cover crop suppression. In some case, the combined use of flaming and roller crimpers allowed reaching the 90% of cover crop devitalisation, which happened six weeks after the termination date. More importantly, the use of flaming in combination with rollers shortened the time needed to achieve the estimated levels of devitalisation, compared with the rollers used alone. We conclude that flaming is an effective tool to increase the effectiveness of roller crimpers. Nevertheless, further research is needed to identify solutions to overcome the barrier of the high operational costs of flaming, which is constraining its wider adoption by farmers. Future studies could focus, for instance, on the development of a new prototype of combined machine for crimping and flaming the cover crops simultaneously, which could potentially reduce the operational costs

    The Random Discrete Action for 2-Dimensional Spacetime

    Full text link
    A one-parameter family of random variables, called the Discrete Action, is defined for a 2-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this Discrete Action is calculated for various regions of 2D Minkowski spacetime. When a causally convex region of 2D Minkowski spacetime is divided into subregions using null lines the mean of the Discrete Action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to zero as the discreteness scale is taken to zero. This result is used to predict that the mean of the Discrete Action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The ``topological'' character of the Discrete Action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte

    The shear viscosity of the non-commutative plasma

    Full text link
    We compute the shear viscosity of the non-commutative N=4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result \eta/s = 1/4\pi for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory.Comment: 17 pages. v2: reference adde

    The Viscosity Bound Conjecture and Hydrodynamics of M2-Brane Theory at Finite Chemical Potential

    Full text link
    Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio η/s\eta/s is always bounded from below by a universal multiple of ℏ\hbar i.e., ℏ/(4πkB)\hbar/(4\pi k_{B}) for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio η/s\eta/s and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.Comment: LaTeX, 26+1 Pages, 4 Figures, Version 2: references adde

    On-shell recursion relations for all Born QCD amplitudes

    Full text link
    We consider on-shell recursion relations for all Born QCD amplitudes. This includes amplitudes with several pairs of quarks and massive quarks. We give a detailed description on how to shift the external particles in spinor space and clarify the allowed helicities of the shifted legs. We proof that the corresponding meromorphic functions vanish at z --> infinity. As an application we obtain compact expressions for helicity amplitudes including a pair of massive quarks, one negative helicity gluon and an arbitrary number of positive helicity gluons.Comment: 30 pages, minor change
    • …
    corecore