1,385 research outputs found

    Lepton-nucleus scattering in the impulse approximation regime

    Full text link
    We discuss theoretical calculations of electron- and neutrino-nucleus scattering, carried out using realistic nuclear spectral functions and including the effect of final state interactions. Comparison between electron scattering data and the calculated inclusive cross sections off oxygen shows that the Fermi gas model fails to provide a satisfactory description of the measured cross sections, and inclusion of nuclear dynamics is needed. The role of Pauli blocking in charged-current neutrino induced reactions at low Q2Q^2 is also analyzed.Comment: To be published in the Proceedings of NUFACT05 (Nucl. Phys. B, Proceedings Supplements

    Final-state interactions in the response of nuclear matter

    Get PDF
    Final-state interactions in the response of a many-body system to an external probe delivering large momentum are normally described using the eikonal approximation, for the trajectory of the struck particle, and the frozen approximation, for the positions of the spectators. We propose a generalization of this scheme, in which the initial momentum of the struck particle is explicitly taken into account. Numerical calculations of the nuclear matter response at 1 <∣q∣<< |{\bf q}| < 2 GeV/c show that the inclusion of this momentum dependence leads to a sizable effect in the low energy tail. Possible implications for the analysis of existing electron-nucleus scattering data are discussed.Comment: 21 pages, 4 figure

    Final state interaction contribution to the response of confined relativistic particles

    Full text link
    We report studies of the response of a massless particle confined by a potential. At large momentum transfer q it exhibits \tilde{y} or equivalently Nachtmann \xi scaling, and acquires a constant width independent of q. This width has a contribution from the final state interactions of the struck particle, which persists in the q->\infty limit. The width of the response predicted using plane wave impulse approximation is smaller because of the neglect of final state interactions in that approximation. However, the exact response may be obtained by folding the approximate response with a function representing final state interaction effects. We also study the response obtained from the momentum distribution assuming that the particle is on the energy shell both before and after being struck. Quantitative results are presented for the special case of a linear confining potential. In this case the response predicted with the on-shell approximation has correct values for the total strength, mean energy and width, however its shape is wrong.Comment: 11 pages, 3 figures, submitted to Phys. Rev.

    Interpretation of y-scaling of the nuclear response

    Get PDF
    The behavior of the nuclear matter response in the region of large momentum transfer, in which plane wave impulse approximation predicts the onset of y-scaling, is discussed. The theoretical analysis shows that scaling violations produced by final state interactions are driven by the momentum dependence of the nucleon-nucleon scattering cross section. Their study may provide valuable information on possible modifications of nucleon-nucleon scattering in the nuclear medium.Comment: 4 pages with 3 figures. To appear in Physical Review Letter

    Nuclear Physics with Electroweak Probes

    Full text link
    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.Comment: Invited Talk at the XII Workshop on Theoretical Nuclear Physics in Italy, Cortona, October 8-10, 200

    Proton Decay: Improving the sensitivity through nuclear dynamics?

    Get PDF
    The kinematics of the decay of a bound proton is governed by the proton spectral function. We evaluate this quantity in 16O using the information from nuclear physics experiments. It also includes a correlated part. The reliability of this evaluation is sufficient to open the possibility of correlated cuts in the missing mass and momentum variables in order to identify the decay events from the bound protons with a possible increase of the signal to noise ratio.Comment: 6 pages, 6 figures. CERN preprint: CERN-PH-TH/2010-036. To appear in Phys Rev

    Nuclear matter hole spectral function in the Bethe-Brueckner-Goldstone approach

    Get PDF
    The hole spectral function is calculated in nuclear matter to assess the relevance of nucleon-nucleon short range correlations. The calculation is carried out within the Brueckner scheme of many-body theory by using several nucleon-nucleon realistic interactions. Results are compared with other approaches based on variational methods and transport theory. Discrepancies appear in the high energy region, which is sensitive to short range correlations, and are due to the different many-body treatment more than to the specific N-N interaction used. Another conclusion is that the momentum dependence of the G-matrix should be taken into account in any self consistent approach.Comment: 7 pages, 5 figure

    The \gamma-ray production in neutral-current neutrino oxygen interaction in the energy range above 100 MeV

    Full text link
    We calculate the cross section of the gamma-ray production from neutral-current neutrino-oxygen quasi-elastic interaction, ν+16ˆO→ν+p+15N∗\nu+\^{16}O \rightarrow \nu +p+^{15}N*, or ν+16O→ν+n+15O∗\nu+^{16}O \rightarrow \nu+n+^{15}O*, in which the residual nuclei (15N* or 15O*) lead to the gamma-ray emission with gamma-ray energy >6 MeV at the branching ratio of 41%. Above 200 MeV, this cross section dominates over that of gamma-ray production from the inelastic reaction, ν+16O−>ν+16O∗\nu+^{16}O->\nu+^{16}O*. In the present calculation, spectral function and the spectroscopic factors of 1p1/2,1p3/2and1s1/21p_{1/2}, 1p_{3/2} and 1s_{1/2} states are essential. The gamma-ray production is dominated by the deexcitation of 1p3/21p_{3/2} state of the residual nucleus
    • …
    corecore