1,091 research outputs found

    On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field

    Get PDF
    We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.Comment: v2: 20 pages, misprints corrected, footnotes adde

    Towards an exact frame formulation of conformal higher spins in three dimensions

    Full text link
    In this note we discuss some aspects of the frame formulation of conformal higher spins in three dimensions. We give some exact formulae for the coupled spin two - spin three part of the full higher spin theory and propose a star product Lagrangian for all spins from two and up. Since there is no consistent Lagrangian formulation based on the Poisson bracket we start the construction from the field equations in this approximation of the star product. The higher spin algebra is then realized in terms of classical variables which leads to certain important simplifications that we take advantage of. The suggested structure of the all-spin Lagrangian given here is, however, obtained using an expansion of the star product beyond the Poisson bracket in terms of multi-commutators and the Lagrangian should be viewed as a starting point for the derivation of the full theory based on a star product. How to do this is explained as well as how to include the coupling to scalar fields. We also comment on the AdS/CFT relation to four dimensions.Comment: 18 pages, v2: misprints corrected, an appendix, footnotes and some clarifying remarks added, 21 page

    Pure Spinors and D=6 Super-Yang-Mills

    Full text link
    Pure spinor cohomology has been used to describe maximally supersymmetric theories, like D=10 super-Yang-Mills and D=11 supergravity. Supersymmetry closes on-shell in such theories, and the fields in the cohomology automatically satisfy the equations of motion. In this paper, we investigate the corresponding structure in a model with off-shell supersymmetry, N=1 super-Yang-Mills theory in D=6. Here, fields and antifields are obtained as cohomologies in different complexes with respect to the BRST operator Q. It turns out to be natural to enlarge the pure spinor space with additional bosonic variables, subject to some constraints generalising the pure spinor condition, in order to accommodate the different supermultiplets in the same generalised pure spinor wave-function. We construct another BRST operator, s, acting in the cohomology of Q, whose cohomology implies the equations of motion. We comment on the possible use of similar approaches in other models.Comment: 11 pp, 3 figs, plain te

    An action for the super-5-brane in D=11 supergravity

    Get PDF
    An alternative path is taken for deriving an action for the supersymmetric 5-brane in 11 dimensions. Selfduality does not follow from the action, but is consistent with the equations of motion for arbitrary supergravity backgrounds. The action involves a 2-form as well as a 5-form world-volume potential; inclusion of the latter makes the action, as well as the non-linear selfduality relation for the 3-form field strength, polynomial. The requirement of invariance under kappa-transformations determines the form of the selfduality relation, as well as the action. The formulation is shown to be equivalent to earlier formulations of 5-brane dynamics.Comment: plain tex, 8pp. Essential correction to the selfduality equation. Added paragraph showing equivalence to other formulation

    A Note on Topological M5-branes and String-Fivebrane Duality

    Full text link
    We derive the stability conditions for the M5-brane in topological M-theory using kappa-symmetry. The non-linearly self-dual 3-form on the world-volume is necessarily non-vanishing, as is the case also for the 2-form field strengths on coisotropic branes in topological string theory. It is demonstrated that the self-duality is consistent with the stability conditions, which are solved locally in terms of a tensor in the representation 6 of SU(3) in G_2. The double dimensional reduction of the M5-brane is the D4-brane, and its direct reduction is an NS5-brane. We show that the equation of motion for the 3-form on the NS5-brane wrapping a Calabi-Yau space is exactly the Kodaira-Spencer equation, providing support for a string-fivebrane duality in topological string theory.Comment: 11 pp, plain te

    The structure of maximally supersymmetric Yang-Mills theory: constraining higher-order corrections

    Full text link
    We solve the superspace Bianchi identities for ten-dimensional supersymmetric Yang-Mills theory without imposing any kind of constraints apart from the standard conventional one. In this way we obtain a set of algebraic conditions on certain fields which in the on-shell theory are constructed as composite ones out of the physical fields. These conditions must hence be satisfied by any kind of theory in ten dimensions invariant under supersymmetry and some, abelian or non-abelian, gauge symmetry. Deformations of the ordinary SYM theory (as well as the fields) are identified as elements of a certain spinorial cohomology, giving control over field redefinitions and the distinction between physically relevant higher-order corrections and those removable by field redefinitions. The conditions derived severely constrain theories involving F^2-level terms plus higher-order corrections, as for instance those derived from open strings as effective gauge theories on D-branes.Comment: plain tex, 18 pp., 3 fig

    On relating multiple M2 and D2-branes

    Full text link
    Due to the difficulties of finding superconformal Lagrangian theories for multiple M2-branes, we will in this paper instead focus on the field equations. By relaxing the requirement of a Lagrangian formulation we can explore the possibility of having structure constants fABCDf^{ABC}{}_D satisfying the fundamental identity but which are not totally antisymmetric. We exemplify this discussion by making use of an explicit choice of a non-antisymmetric fABCDf^{ABC}{}_D constructed from the Lie algebra structure constants fabcf^{ab}{}_c of an arbitrary gauge group. Although this choice of fABCDf^{ABC}{}_D does not admit an obvious Lagrangian description, it does reproduce the correct SYM theory for a stack of NN D2-branes to leading order in gYM−1g_{YM}^{-1} upon reduction and, moreover, it sheds new light on the centre of mass coordinates for multiple M2-branes.Comment: 9 pages, references added and statements concerning the fundamental identity revise

    Off-shell structure of twisted (2,0) theory

    Get PDF
    A QQ-exact off-shell action is constructed for twisted abelian (2,0) theory on a Lorentzian six-manifold of the form M1,5=C×M4M_{1,5} = C\times M_4, where CC is a flat two-manifold and M4M_4 is a general Euclidean four-manifold. The properties of this formulation, which is obtained by introducing two auxiliary fields, can be summarised by a commutative diagram where the Lagrangian and its stress-tensor arise from the QQ-variation of two fermionic quantities VV and λμν\lambda^{\mu\nu}. This completes and extends the analysis in [arXiv:1311.3300].Comment: 15 pages, 2 figure
    • …
    corecore