80 research outputs found

    Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS) samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix.</p> <p>Results</p> <p>This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P < 0.05) affected by the year of storage and storage conditions. Nine (0.2%) DBS samples failed whole-genome amplification. A total of 4,586 (98.8%) samples met our criterion of success of a genetic call-rate above 97%. The three studies used different arrays, with mean genotyping call-rates of 99.385% (Illumina Infinium Human610-Quad), 99.722% (Illumina Infinium HD HumanOmni1-Quad), and 99.206% (Affymetrix Axiom Genome-Wide CEU). We observed a concordance rate of 99.997% in the 38 methodological replications, and 99.999% in the 27 technical replications. Handling variables such as time of storage, storage conditions and type of filter paper were shown too significantly (P < 0.05) affect the genotype call-rates in some of the arrays, although the effect was minimal.</p> <p>Conclusion</p> <p>Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.</p

    Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines

    Get PDF
    The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants

    Haematogenous Staphylococcus aureus meningitis. A 10-year nationwide study of 96 consecutive cases

    Get PDF
    BACKGROUND: Haematogenous Staphylococcus aureus meningitis is rare but associated with high mortality. Knowledge about the disease is still limited. The objective of this study was to evaluate demographic and clinical prognostic features of bacteraemic S. aureus meningitis. METHODS: Nationwide surveillance in Denmark from 1991 to 2000 with clinical and bacteriological data. Risks of death were estimated by Cox proportional hazards regression analysis. RESULTS: Among 12480 cases of S. aureus bacteraemia/sepsis, we identified 96 cases of non-surgical bacteraemic S. aureus meningitis (0.8%). Incidence rates were 0.24 (95% confidence interval [CI], 0.18 to 0.30)/100 000 population between 1991–1995 and 0.13 (CI, 0.08 to 0.17)/100 000 population between 1996–2000. Mortality was 56%. After adjustment, only co morbidity (hazard ratio [HR], 3.45; CI, 1.15 to 10.30) and critical illness (Pitt score ≥ 4) (HR, 2.14; CI, 1.09 to 4.19) remained independent predictors of mortality. CONCLUSION: The incidence, but not mortality of bacteraemic S. aureus meningitis decreased during the study period. Co morbidity and critical illness were independent predictors of a poor outcome
    • …
    corecore