20 research outputs found
Hemodynamic Changes following Aortic Valve Bypass: A Mathematical Approach
Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.Fonds quebecois de la recherche sur la nature et les technologies (176048
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05â2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
L'Italia come modello per l'Europa e per il mondo nelle politiche sanitarie per il trattamento dell'epatite cronica da HCV
The World Health Organization foresees the
elimination of HCV infection by 2030. In light of this and the curre
nt, nearly worldwide, restriction in direct-acting agents
(DAA) accessibility due to their high price, we aimed to evaluate
the cost-effectiveness of two alternative DAA treatment
policies: Policy 1 (universal): treat all patients, regardless of the fibrosis stage; Policy 2 (prioritized): treat only priori
tized
patients and delay treatment of the
remaining patients until reaching stage F3. T
he model was based on patientâs data
from the PITER cohort. We demonstrated that extending HC
V treatment of patients in any fibrosis stage improves health
outcomes and is cost-effective
Summarized cardiovascular parameters used to simulate all cases.
<p>*Maximum error in computed ratio between AS and AVB flow rates from sensitivity analysis in response to independent variation (±30%) in each parameter</p><p>Summarized cardiovascular parameters used to simulate all cases.</p
Simulated left ventricle and aorta pressures and flow distribution.
<p>(A) Severe AS (EOA = 0.7 cm<sup>2</sup>) & AVB (conduit valve size: 19 mm, conduit size: 18mm), (B) severe AS (EOA = 0.7 cm<sup>2</sup>) & AVB (conduit valve size: 19 mm, conduit size: 26mm). Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.</p
Simulated LV stroke work.
<p>(A) Pre-AVB surgery for a severe AS (EOA = 0.7 cm<sup>2</sup>), (B) post-AVB surgery with a conduit valve size of 19 mm and a conduit size of 18mm, (C) LV stroke work variations with and without AVB for different AS severities. The values are averaged over the all configurations for AVB in terms of conduit and valves sizes simulated in this study.</p
Simulated left ventricle and aorta pressures.
<p>(A) Healthy (No AS & No AVB), (B) severe AS (EOA = 0.7 cm<sup>2</sup>) & No AVB. Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.</p
Schematic diagrams.
<p>(A) Electrical representation, (B) schematic representation of the lumped parameter model used to simulate left-sided heart in presence of aortic stenosis and/or apico-aortic conduit (please see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0123000#pone.0123000.t001" target="_blank">Table 1</a> for all other parameters used in the lumped parameter model).</p
Computed AS and AVB flow rate ratio in the presence of fixed severe AS (EOA = 0.7 cm2).
<p>*Relative error in computed flow rates through native valve with EOA of 0.7 cm<sup>2</sup> and AVB with combinations of 18â19, 20â21 and 22â23, compared to the results reported by Stauffer et al. (2011) are 4.49%, 2.34% and 0.11%, respectively. AV: aortic valve; AVB: aortic valve bypass</p><p>Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively. AV: aortic valve, AVB: aortic valve bypass</p><p>Computed AS and AVB flow rate ratio in the presence of fixed severe AS (EOA = 0.7 cm2).</p