29 research outputs found

    Equivariant localization in supergravity

    Full text link
    We show that supersymmetric supergravity solutions with an R-symmetry Killing vector are equipped with a set of equivariantly closed forms. Various physical observables may be expressed as integrals of these forms, and then evaluated using the Berline-Vergne-Atiyah-Bott fixed point theorem. We illustrate with a variety of holographic examples, including on-shell actions, black hole entropies, central charges, and scaling dimensions of operators. The resulting expressions depend only on topological data and the R-symmetry vector, and hence may be evaluated without solving the supergravity equations.Comment: 6 page

    Localizing Wrapped M5-branes and Gravitational Blocks

    Full text link
    We consider d=2d=2, N=(0,2)\mathcal{N}=(0,2) SCFTs that can arise from M5-branes wrapping four-dimensional, complex, toric manifolds and orbifolds. We use equivariant localization to compute the off-shell central charge of the dual supergravity solutions, obtaining a result which can be written as a sum of gravitational blocks and precisely agrees with a field theory computation using anomaly polynomials and cc-extremization.Comment: 6 page

    The holographic supersymmetric Casimir energy

    Get PDF
    We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S 1 × M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S 1 ×R 4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges

    Holographic renormalization and supersymmetry

    Get PDF
    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.Comment: 70 pages; corrected typo

    Supercurrent anomalies in 4d SCFTs

    Get PDF
    We use holographic renormalization of minimal \mathcalN=2 gauged supergravity in order to derive the general form of the quantum Ward identities for 3d \mathcalN=2 and 4d \mathcalN=1 superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d \mathcalN=1 theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the aa and cc anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. In the case of 4d \mathcalN=1 superconformal theories, we show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the QQ-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the QQ-exactness of the stress tensor in order to resolve a number of apparent paradoxes relating to the supersymmetric Casimir energy, the BPS condition for supsersymmetric vacua, and the compatibility of holographic renormalization with supersymmetry, that were presented in the literature

    Gravitational free energy in topological AdS/CFT

    No full text
    We define and study a holographic dual to the topological twist of N = 4 gauge theories on Riemannian three-manifolds. The gravity duals are solutions to four-dimensional N = 4 gauged supergravity, where the three-manifold arises as a conformal boundary. Following our previous work, we show that the renormalized gravitational free energy of such solutions is independent of the boundary three-metric, as required for a topological theory. We then go further, analyzing the geometry of supersymmetric bulk solutions. Remarkably, we are able to show that the gravitational free energy of any smooth four-manifold filling of any three-manifold is always zero. Aided by this analysis, we prove a similar result for topological AdS5/CFT4. We comment on the implications of these results for the large N limits of topologically twisted gauge theories in three and four dimensions, including the ABJM theory and N = 4 SU(N) super-Yang{Mills, respectively

    Gravitational free energy in topological AdS/CFT

    No full text
    We define and study a holographic dual to the topological twist of N = 4 gauge theories on Riemannian three-manifolds. The gravity duals are solutions to four-dimensional N = 4 gauged supergravity, where the three-manifold arises as a conformal boundary. Following our previous work, we show that the renormalized gravitational free energy of such solutions is independent of the boundary three-metric, as required for a topological theory. We then go further, analyzing the geometry of supersymmetric bulk solutions. Remarkably, we are able to show that the gravitational free energy of any smooth four-manifold filling of any three-manifold is always zero. Aided by this analysis, we prove a similar result for topological AdS5/CFT4. We comment on the implications of these results for the large N limits of topologically twisted gauge theories in three and four dimensions, including the ABJM theory and N = 4 SU(N) super-Yang{Mills, respectively

    Equivariant localization for AdS/CFT

    No full text
    Abstract We explain how equivariant localization may be applied to AdS/CFT to compute various BPS observables in gravity, such as central charges and conformal dimensions of chiral primary operators, without solving the supergravity equations. The key ingredient is that supersymmetric AdS solutions with an R-symmetry are equipped with a set of equivariantly closed forms. These may in turn be used to impose flux quantization and compute observables for supergravity solutions, using only topological information and the Berline-Vergne-Atiyah-Bott fixed point formula. We illustrate the formalism by considering AdS 5 × M 6 and AdS 3 × M 8 solutions of D = 11 supergravity. As well as recovering results for many classes of well-known supergravity solutions, without using any knowledge of their explicit form, we also compute central charges for which explicit supergravity solutions have not been constructed
    corecore