145 research outputs found
Multiplexed gas spectroscopy using tunable VCSELs
Detection and identification of gas species using tunable laser diode laser absorption spectroscopy has been performed using vertical cavity surface emitting lasers (VCSEL). Two detection methods are compared: direct absorbance and wavelength modulation spectroscopy (WMS). In the first, the output of a DC-based laser is directly monitored to detect for any quench at the targeted specie wavelength. In the latter, the emission wavelength of the laser is modulated by applying a sinusoidal component on the drive current of frequency {omega}, and measuring the harmonics component (2{omega}) of the photo-detected current. This method shows a better sensitivity measured as signal to noise ratio, and is less susceptible to interference effects such as scattering or fouling. Gas detection was initially performed at room temperature and atmospheric conditions using VCSELs of emission wavelength 763 nm for oxygen and 1392 nm for water, scanning over a range of approximately 10 nm, sufficient to cover 5-10 gas specific absorption lines that enable identification and quantization of gas composition. The amplitude and frequency modulation parameters were optimized for each detected gas species, by performing two dimensional sweeps for both tuning current and either amplitude or frequency, respectively. We found that the highest detected signal is observed for a wavelength modulation amplitude equal to the width of the gas absorbance lines, in good agreement with theoretical calculations, and for modulation frequencies below the time response of the lasers (<50KHz). In conclusion, we will discuss limit of detection studies and further implementation and packaging of VCSELs in diode arrays for continuous and simultaneous monitoring of multiple species in gaseous mixtures
Mesoscopic superpositions of vibronic collective states of N trapped ions
We propose a scalable procedure to generate entangled superpositions of
motional coherent states and electronic states in N trapped ions. Beyond their
fundamental importance, these states may be of interest for quantum information
processing and may be used in experimental studies of decoherence.Comment: Final version, as published in Physical Review Letters. See also
further developments and applications in quant-ph/020207
Light spin-1/2 or spin-0 Dark Matter particles
We recall and precise how light spin-0 particles could be acceptable Dark
Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate
the (rather large) annihilation cross sections required, and show how they may
be induced by a new light neutral spin-1 boson U. If this one is vectorially
coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation
cross section into e+e- automatically includes a v_dm^2 suppression factor at
threshold, as desirable to avoid an excessive production of gamma rays from
residual Dark Matter annihilations. We also relate Dark Matter annihilations
with production cross sections in e+e- scatterings. Annihilation cross sections
of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same
expressions. Just as for spin-0, light spin-1/2 Dark Matter particles
annihilating into e+e- could be responsible for the bright 511 keV gamma ray
line observed by INTEGRAL from the galactic bulge.Comment: 10 page
Development of an automated DNA purification module using a micro-fabricated pillar chip
We present a fully automated DNA purification module comprised of a micro-fabricated chip and sequential injection analysis system that is designed for use within autonomous instruments that continuously monitor the environment for the presence of biological threat agents. The chip has an elliptical flow channel containing a bed (3.5 × 3.5 mm) of silica-coated pillars with height, width and center-to-center spacing of 200, 15, and 30 µm, respectively, which provides a relatively large surface area (ca. 3 cm2) for DNA capture in the presence of chaotropic agents. We have characterized the effect of various fluidic parameters on extraction performance, including sample input volume, capture flow rate, and elution volume. The flow-through design made the pillar chip completely reusable; carryover was eliminated by flushing lines with sodium hypochlorite and deionized water between assays. A mass balance was conducted to determine the fate of input DNA not recovered in the eluent. The device was capable of purifying and recovering Bacillus anthracis genomic DNA (input masses from 0.32 to 320 pg) from spiked environmental aerosol samples, for subsequent analysis using polymerase chain reaction-based assays.<br /
Recommended from our members
Hybridization and Selective Release of DNA Microarrays
DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to single spots to release hybridized DNA. This work leverages LLNL expertise in optics, microfluids, and bioinformatics
Chronic Maternal Depression Is Associated with Reduced Weight Gain in Latino Infants from Birth to 2 Years of Age
BACKGROUND: Latino children are at increased risk for mirconutrient deficiencies and problems of overweight and obesity. Exposures in pregnancy and early postpartum may impact future growth trajectories. OBJECTIVES: To evaluate the relationship between prenatal and postnatal maternal depressive symptoms experienced in pregnancy and infant growth from birth to 2 years of age in a cohort of Latino infants. METHODS: We recruited pregnant Latina mothers at two San Francisco hospitals and followed their healthy infants to 24 months of age. At 6, 12 and 24 months of age, infants were weighed and measured. Maternal depressive symptoms were assessed prenatally and at 4-6 weeks postpartum. Women who had high depressive symptoms at both time periods were defined as having chronic depression. Logistic mixed models were applied to compare growth curves and risk for overweight and underweight based on exposure to maternal depression. RESULTS: We followed 181 infants to 24 months. At 12 and 24 months, respectively, 27.4% and 40.5% were overweight, and 5.6% and 2.2% were underweight. Exposure to chronic maternal depression was associated with underweight (OR = 12.12, 95%CI 1.86-78.78) and with reduced weight gain in the first 2 years of life (Coef = -0.48, 95% CI -0.94-0.01) compared with unexposed infants or infants exposed to episodic depression (depression at one time point). Exposure to chronic depression was also associated with reduced risk for overweight in the first 2 years of life (OR 0.28, 95%CI 0.03-0.92). CONCLUSIONS: Exposure to chronic maternal depression in the pre- and postnatal period was associated with reduced weight gain in the first two years of life and greater risk for failure to thrive, in comparison with unexposed infants or those exposed episodically. The infants of mothers with chronic depression may need additional nutritional monitoring and intervention
A dimensioning and tolerancing methodology for concurrent engineering applications I: problem representation
This paper is the first of two which present a methodology for determining the dimensional specifications of all the component parts and sub-assemblies of a product according to their dimensional requirements. To achieve this goal, two major steps are followed, each of which is described in a paper. In the first paper, all relationships necessary for finding the values of dimensions and tolerances are represented in a matrix form, known as a Dimensional Requirements/Dimensions (DR/D) matrix. In the second paper, the values of individual dimensions and tolerances are determined by applying a comprehensive solution strategy to satisfy all the relationships represented in the DR/D matrix. The methodology is interactive and suitable for use in a concurrent engineering (CE) environment. The graphical tool presented in this paper will assist a CE team in visualizing the overall D&T problem and foreseeing the ramifications of decisions regarding the selection of dimensions and tolerances. This will assist the CE team to systematically determine all the controllable variables, such as dimensions, tolerances, and manufacturing processes
Artisans Angkor: Reclaiming Cambodian silk crafts under French patronage (1992–2017)
Following the 1991 Paris Peace Accords that granted a return to a relative political stability in Cambodia, the non-profit organization Les Chantiers Ecoles was launched with the support of the European Union to revive local traditional crafts and sericulture that had nearly vanished under the Khmer Rouge regime. This vocational institute was the result of a cooperation between the French and the Cambodian government. It provided training to disadvantaged young villagers of Siem Reap’s area in polychromic woodwork, stone carving, metal, lacquerware, and silk weaving. Eventually, the project turned into a social enterprise under the French name Artisans Angkor. Drawing its inspiration from the surrounding archaeological splendors of Angkor Wat, the company emphasizes its authentic making processes. Artisans Angkor welcomes tourists in its silk farm near Siem Reap, using this production site as a showcase for sericulture from silkworms breeding to weaving, promoting the revival of indigenous golden silk while selling a wide range of souvenirs goods. Relying on the performative value of silk craft practices, Artisans Angkor has developed an engaging storytelling, an educational and marketing tool which elevates crafts as tokens of Cambodian cultural identity. Praised by the Cambodians who consider the brand as a national success, the enterprise has however kept a French leadership. Tracing the company’s history, this paper examines to which extent Artisan Angkor follows the definition of a Transnational Artisan Partnership developed by anthropologist Susan Falls and how it pertains to a form of soft power for the French. Through the analysis of its aesthetic and discourses, this case study highlights the project’s hybrid nature and demonstrates how it relates to the colonial model of the School of Cambodian Arts implemented in 1920 under the French Protectorate to promote Cambodian crafts
- …