196 research outputs found

    Linear response of a grafted semiflexible polymer to a uniform force field

    Full text link
    We use the worm-like chain model to analytically calculate the linear response of a grafted semiflexible polymer to a uniform force field. The result is a function of the bending stiffness, the temperature, the total contour length, and the orientation of the field with respect to that of the grafted end. We also study the linear response of a worm-like chain with a periodic alternating sequence of positive and negative charges. This can be considered as a model for a polyampholyte with intrinsic bending siffness and negligible intramolecular interactions. We show how the finite intrinsic persistence length affects the linear response to the external field.Comment: 6 pages, 3 figure

    A constrained random-force model for weakly bending semiflexible polymers

    Full text link
    The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse directions has been a paradigm in the statistical physics of disordered systems. In this brief note, we investigate a modified version of the above model where the total transverse force along the polymer contour and the related total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of the random force by significant numerical prefactors. We also show that a transverse random force effectively makes the filament softer to compression by inducing undulations. We calculate the related linear compression coefficient in both the usual and the constrained random force model.Comment: 4 pages, 1 figure, accepted for publication in PR

    Weak point disorder in strongly fluctuating flux-line liquids

    Get PDF
    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2+1 dimensions [P. Benetatos and M. C. Marchetti, Phys. Rev. B 64, 054518, (2001)]. In this model, flux lines are allowed to be arbitrarily curved and can even form closed loops. Point defects can be scalar or polar. In the latter case, the direction of their dipole moments can be random or correlated. Within the Gaussian approximation of our hydrodynamic model, we calculate disorder-induced corrections to the correlation functions of the flux-line fields and the elastic moduli of the flux-line liquid. We find that scalar disorder enhances loop nucleation, and polar (magnetic) defects decrease the tilt modulus.Comment: 15 pages, submitted to Pramana-Journal of Physics for the special volume on Vortex State Studie

    Repetitive concussive and subconcussive injury in a human tau mouse model results in chronic cognitive dysfunction and disruption of white matter tracts, but not tau pathology

    Get PDF
    Due to the unmet need for a means to study chronic traumatic encephalopathy (CTE) in vivo, there have been numerous efforts to develop an animal model of this progressive tauopathy. However, there is currently no consensus in the field on an injury model that consistently reproduces the neuropathological and behavioral features of CTE. We have implemented a repetitive Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) injury paradigm in human transgenic (hTau) mice. Animals were subjected to daily subconcussive or concussive injuries for 20 days and tested acutely, 3 months, and 12 months post-injury for deficits in social behavior, anxiety, spatial learning and memory, and depressive behavior. Animals also were assessed for chronic tau pathology, astrogliosis, and white matter degeneration. Repetitive concussive injury caused acute deficits in Morris water maze performance, including reduced swimming speed and increased distance to the platform during visible and hidden platform phases that persisted during the subacute and chronic time-points following injury. We found evidence of white matter disruption in animals injured with subconcussive and concussive injuries, with the most severe disruption occurring in the repetitive concussive injury group. Severity of white matter disruption in the corpus callosum was moderately correlated with swimming speed, while white matter disruption in the fimbria showed weak but significant correlation with worse performance during probe trial. There was no evidence of tau pathology or astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as 1 year post-injury that may be related to chronic white matter disruption, although the relationship with CTE remains to be determined

    Workflow for the Validation of Geomechanical Simulations through Seabed Monitoring for Offshore Underground Activities

    Get PDF
    Underground fluid storage is gaining increasing attention as a means to balance energy production and consumption, ensure energy supply security, and contribute to greenhouse gas reduction in the atmosphere by CO2 geological sequestration. However, underground fluid storage generates pressure changes, which in turn induce stress variations and rock deformations. Numerical geomechanical models are typically used to predict the response of a given storage to fluid injection and withdrawal, but validation is required for such a model to be considered reliable. This paper focuses on the technology and methodology that we developed to monitor seabed movements and verify the predictions of the impact caused by offshore underground fluid storage. To this end, we put together a measurement system, integrated into an Autonomous Underwater Vehicle, to periodically monitor the seabed bathymetry. Measurements repeated during and after storage activities can be compared with the outcome of numerical simulations and indirectly confirm the existence of safety conditions. To simulate the storage system response to fluid storage, we applied the Virtual Element Method. To illustrate and discuss our methodology, we present a possible application to a depleted gas reservoir in the Adriatic Sea, Italy, where several underground geological formations could be potentially converted into storage in the futur

    Transverse fluctuations of grafted polymers

    Full text link
    We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse direction, a Gaussian in the stiff and flexible limits, shows a double peak structure at intermediate stiffnesses. We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review

    Variational theory of flux-line liquids

    Full text link
    We formulate a variational (Hartree like) description of flux line liquids which improves on the theory we developed in an earlier paper [A.M. Ettouhami, Phys. Rev. B 65, 134504 (2002)]. We derive, in particular, how the massive term confining the fluctuations of flux lines varies with temperature and show that this term vanishes at high enough temperatures where the vortices behave as freely fluctuating elastic lines.Comment: 10 pages, 1 postscript figur

    Evidence for a Two-stage Melting Transition of the Vortex Matter in Bi2Sr2Ca1Cu2O8+d Single Crystals obtained by Muon Spin Rotation

    Full text link
    From muon spin rotation measurements on under- to overdoped Bi-2212 crystals we obtain evidence for a two-stage transition of the vortex matter as a function of temperature. The first transition is well known and related to the irreversibility line (IL). The second one is located below the IL and has not been previously observed. It occurs for all three sets of crystals and is unrelated to the vortex mobility. Our data are consistent with a two-stage melting scenario where the intra-planar melting of the vortex lattice and the inter-planar decoupling of the vortex lines occur independently.Comment: 9 pages and 3 figure

    Soil deformation analysis through fluid-dynamic modelling and DInSAR measurements: a focus on groundwater withdrawal in the Ravenna area (Italy)

    Get PDF
    This study aims at assessing the deformation processes affecting an area NW of the city of Ravenna (northern Italy), caused by groundwater withdrawal activities. In situ data, geologic and structural maps, piezometric measurements, underground water withdrawal volumes, and satellite C-band SAR data were used to jointly exploit two different techniques: 1) fluid-dynamic and geomechanical modelling (by RSE S.p.A), and 2) Differential Synthetic Aperture Radar Interferometry (DInSAR) analysis (by CNR - IREA). The results of the comparative analysis presented in this work brought new evidence about the contribution of groundwater withdrawal to the total subsidence affecting the area during the 2000-2017 time interval. In particular, they show an increase of the subsidence from year 2000 to 2010 and a decrease from year 2010 to 2017. These results are generally in line with groundwater withdrawal data that report a reduction of the extracted water volumes during the considered temporal interval. Meantime, they show a delay effect in the subsidence process, partially recovered during the 2010-2017 thanks to a stabilisation of the extracted groundwater volumes. The presented results shade new light on the groundwater withdrawal contribution to the subsidence of the analysed zone, although further investigations are foreseen to better clarify the ongoing scenario
    • …
    corecore