17 research outputs found
From structural polymorphism to structural metamorphosis of the coat protein of flexuous filamentous potato virus Y
The structural diversity and tunability of the capsid proteins (CPs) of various icosahedral and rod-shaped viruses have been well studied and exploited in the development of smart hybrid nanoparticles. However, the potential of CPs of the wide-spread flexuous filamentous plant viruses remains to be explored. Here, we show that we can control the shape, size, RNA encapsidation ability, symmetry, stability and surface functionalization of nanoparticles through structure-based design of CP from potato virus Y (PVY). We provide high-resolution insight into CP-based self-assemblies, ranging from large polymorphic or monomorphic filaments to smaller annular, cubic or spherical particles. Furthermore, we show that we can prevent CP self-assembly in bacteria by fusion with a cleavable protein, enabling controlled nanoparticle formation in vitro. Understanding the remarkable structural diversity of PVY CP not only provides possibilities for the production of biodegradable nanoparticles, but may also advance future studies of CP’s polymorphism in a biological context
Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices.
Optical detection has become a convenient and scalable approach to read out information from microfluidic systems. For the study of many key biomolecules, however, including peptides and proteins, which have low fluorescence emission efficiencies at visible wavelengths, this approach typically requires labeling of the species of interest with extrinsic fluorophores to enhance the optical signal obtained - a process which can be time-consuming, requires purification steps, and has the propensity to perturb the behavior of the systems under study due to interactions between the labels and the analyte molecules. As such, the exploitation of the intrinsic fluorescence of protein molecules in the UV range of the electromagnetic spectrum is an attractive path to allow the study of unlabeled proteins. However, direct visualization using 280 nm excitation in microfluidic devices has to date commonly required the use of coherent sources with frequency multipliers and devices fabricated out of materials that are incompatible with soft lithography techniques. Here, we have developed a simple, robust, and cost-effective 280 nm LED platform that allows real-time visualization of intrinsic fluorescence from both unlabeled proteins and protein complexes in polydimethylsiloxane microfluidic channels fabricated through soft lithography. Using this platform, we demonstrate intrinsic fluorescence visualization of proteins at nanomolar concentrations on chip and combine visualization with micron-scale diffusional sizing to measure the hydrodynamic radii of individual proteins and protein complexes under their native conditions in solution in a label-free manner
Regulation of inositol 5-phosphatase activity by the C2 domain of SHIP1 and SHIP2
SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes
Development of a PNGase Rc column for online deglycosylation of complex glycoproteins during HDX-MS
Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from Rudaea cellulosilytica) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins. We show that HDX-MS with the PNGase Rc column enables efficient online removal of N-linked glycans and the determination of the HDX of glycosylated regions in several complex glycoproteins. Additionally, we use the PNGase Rc column to perform a comprehensive HDX-MS mapping of the binding epitope of a mAb to c-Met, a complex glycoprotein drug target. Importantly, the column retains high activity in the presence of common quench-buffer additives like TCEP and urea and performed consistent across 114 days of extensive use. Overall, our work shows that HDX-MS with the integrated PNGase Rc column can enable fast and efficient online deglycosylation at harsh quench conditions to provide comprehensive analysis of complex glycoproteins
Emergence of fractal geometries in the evolution of a metabolic enzyme
Fractals are patterns that are self-similar across multiple length-scales. Macroscopic fractals are common in nature; however, so far, molecular assembly into fractals is restricted to synthetic systems. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution
Recommended from our members
Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices.
Optical detection has become a convenient and scalable approach to read out information from microfluidic systems. For the study of many key biomolecules, however, including peptides and proteins, which have low fluorescence emission efficiencies at visible wavelengths, this approach typically requires labeling of the species of interest with extrinsic fluorophores to enhance the optical signal obtained - a process which can be time-consuming, requires purification steps, and has the propensity to perturb the behavior of the systems under study due to interactions between the labels and the analyte molecules. As such, the exploitation of the intrinsic fluorescence of protein molecules in the UV range of the electromagnetic spectrum is an attractive path to allow the study of unlabeled proteins. However, direct visualization using 280 nm excitation in microfluidic devices has to date commonly required the use of coherent sources with frequency multipliers and devices fabricated out of materials that are incompatible with soft lithography techniques. Here, we have developed a simple, robust, and cost-effective 280 nm LED platform that allows real-time visualization of intrinsic fluorescence from both unlabeled proteins and protein complexes in polydimethylsiloxane microfluidic channels fabricated through soft lithography. Using this platform, we demonstrate intrinsic fluorescence visualization of proteins at nanomolar concentrations on chip and combine visualization with micron-scale diffusional sizing to measure the hydrodynamic radii of individual proteins and protein complexes under their native conditions in solution in a label-free manner
Rapid, DNA-induced interface swapping by DNA gyrase
DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (–1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface ‘swapping’ (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed ‘swivelling’ mechanism for DNA gyrase (Gubaev et al., 2016)
Expansion and neofunctionalization of actinoporin-like genes in Mediterranean mussel (Mytilus galloprovincialis).
Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence–absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity